Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838018

RESUMO

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Floema , Folhas de Planta , Transdução de Sinais , Folhas de Planta/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Floema/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Glutamato/metabolismo , Xilema/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 24(1): 19, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166635

RESUMO

BACKGROUND: Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS: Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS: These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.


Assuntos
Antocianinas , Camellia , Antocianinas/metabolismo , Camellia/genética , Camellia/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Metaboloma , Glucosídeos/metabolismo , Cor
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732191

RESUMO

Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.


Assuntos
Acacia , Regulação da Expressão Gênica de Plantas , Madeira , Acacia/metabolismo , Acacia/genética , Madeira/metabolismo , Madeira/química , Flavonoides/metabolismo , Lignina/metabolismo , Transcriptoma , Fenóis/metabolismo , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos
4.
New Phytol ; 237(2): 471-482, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36266960

RESUMO

The development of a series of elite maize hybrids has greatly increased crop yield in the past decades. Parental lines of these hybrids usually come from different heterotic groups and contain many genetic differences. Identifications of important quantitative trait genes in the elite hybrids can extend our understanding of heterosis and also help to guide genetic improvement. Here, we mapped a major quantitative trait locus using a linkage population from an elite maize hybrid Zhengdan958 and identified ZmLNG1 as the causative gene controlling multiple morphologic traits in maize. A 6-kb deletion in one parental line of the hybrid leads to the fusion of ZmLNG1 with its nearby gene. The fusion event prevents the C-terminal of ZmLNG1 from interacting with ZmTON1, which resulted in the change of plant architecture. Further experiments demonstrated that ZmLNG1 could act as a mediator to connect ZmTON1 and ZmOFPs, which belong to another type of plant morphological regulatory proteins, thereby affecting the phosphorylation level of ZmOFPs. These results demonstrate the importance of ZmLNG1 in forming the TON1-TRM-PP2A complex and provide a model for the regulation of plant organ morphology by TON1-recruiting motifs (TRMs) and Ovate family proteins (OFPs).


Assuntos
Vigor Híbrido , Zea mays , Zea mays/genética , Locos de Características Quantitativas , Fenótipo
5.
J Digit Imaging ; 36(1): 114-123, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36085330

RESUMO

The accuracy of computed tomography angiography (CTA) image interpretation depends on the radiologist. This study aims to develop a new method for automatically detecting intracranial aneurysms from CTA images using deep learning, based on a convolutional neural network (CNN) implemented on the DeepMedic platform. Ninety CTA scans of patients with intracranial aneurysms are collected and divided into two datasets: training (80 subjects) and test (10 subjects) datasets. Subsequently, a deep learning architecture with a three-dimensional (3D) CNN model is implemented on the DeepMedic platform for the automatic segmentation and detection of intracranial aneurysms from the CTA images. The samples in the training dataset are used to train the CNN model, and those in the test dataset are used to assess the performance of the established system. Sensitivity, positive predictive value (PPV), and false positives are evaluated. The overall sensitivity and PPV of this system for detecting intracranial aneurysms from CTA images are 92.3% and 100%, respectively, and the segmentation sensitivity is 92.3%. The performance of the system in the detection of intracranial aneurysms is closely related to their size. The detection sensitivity for small intracranial aneurysms (≤ 3 mm) is 66.7%, whereas the sensitivity of detection for large (> 10 mm) and medium-sized (3-10 mm) intracranial aneurysms is 100%. The deep learning architecture with a 3D CNN model on the DeepMedic platform can reliably segment and detect intracranial aneurysms from CTA images with high sensitivity.


Assuntos
Aprendizado Profundo , Aneurisma Intracraniano , Humanos , Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X/métodos , Angiografia Digital/métodos , Angiografia Cerebral/métodos , Sensibilidade e Especificidade
6.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959668

RESUMO

To systematically and comprehensively investigate the metabolic characteristics of coloring substances and floral aroma substances in Camellia oleifera petals with different colors, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics methods were applied to determine the metabolic profiles of white, candy-pink and dark-red petals. The results revealed that 270 volatile organic compounds were detected, mainly terpenoids, heterocyclic, esters, hydrocarbons, aldehydes, and alcohols, in which phenylethyl alcohol, lilac alcohol, and butanoic acid, 1-methylhexyl ester, hotrienol, alpha-terpineol and 7-Octen-4-ol, 2-methyl-6-methylene-, (S)-, butanoic acid, 2-methyl-, 2-methylbutyl ester, 2,4-Octadienal, (E,E)- could act as the floral scent compounds. A total of 372 flavonoid compounds were identified, and luteolin, kaempferol, cyanidin and peonidin derivatives were considered as the main coloring substances for candy-pink and dark-red petal coloration. In conclusion, this study intuitively and quantitatively exhibited the variations in flower color and floral scent of C. oleifera petal with different colors caused by changes in variations of flavonoids and volatile organic compound composition, and provided useful data for improving the sensory quality and breeding of C. oleifera petals.


Assuntos
Camellia , Compostos Orgânicos Voláteis , Flavonoides/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Ácido Butírico , Melhoramento Vegetal , Álcoois , Ésteres , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Odorantes/análise
7.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570640

RESUMO

Rapeseed's (Brassica napus L.) colorful petals have important ornamental values. However, the mechanisms of regulating petals coloration in rapeseed are still unknown. In our study, we investigated the key differential coloring substances in nine rapeseed cultivars with different petal colors, and 543 metabolites were detected and characterized through UPLC-HESI-MS/MS. Among them, the kinds and contents of flavonols, flavones, and anthocyanidins were the main contributors to petals' coloration. Tamarixetin-, quercetin-, butin-, naringenin- and luteolin-derivates were the main pigment bases in white and yellow petals. Peonidin-3,5-O-diglucoside, peonidin-3-O-(6″-O-caffeoyl)glucoside, and quercetin-derivatives were the main coloring substances in pink petals. Acylated cyanidin derivatives might lead to a series of different purple petal colors. Glycosylated anthocyanins were responsible for the coloration of rapeseed red petals, and peonidin-3-O-glucoside and kaempferol-derivatives were mainly detected from the red petals. These results provide comprehensive insights into the difference in flavonoid metabolites in rapeseed petals with different colors and supply theoretical supports for the breeding of novel colorful rapeseed cultivars.


Assuntos
Brassica napus , Brassica rapa , Antocianinas/metabolismo , Brassica napus/metabolismo , Quercetina/metabolismo , Espectrometria de Massas em Tandem/métodos , Cor , Melhoramento Vegetal , Flavonoides/metabolismo , Brassica rapa/metabolismo , Flores/metabolismo
8.
Geriatr Nurs ; 50: 158-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36780713

RESUMO

Insufficient information is available on the prevalence and predictors of self-neglect among Chinese domestic migrant older adults resulting from rapid aging and mass population migration. This cross-sectional study was conducted on 597 older adults in four districts of Wenzhou from May to November 2020. A self-neglect scale was used to assess the prevalence of self-neglect among such adults. Sixteen potential predictors were considered in the domains of sociodemographic, health condition, socioeconomic, social isolation, intergenerational relationship, and filial piety. The prevalence of self-neglect within this population was 72.7%. Social isolation (OR = 0.823; 95%CI 0.684-0.990), physical health (OR = 0.966; 95%CI 0.941-0.992), intergenerational ambivalence (OR = 1.240; 95%CI 1.013-1.519), and affective-cognitive solidarity (OR = 0.796; 95%CI 0.719-0.880) were found to be independent predictors of self-neglect in this population. We suggest that community health service organizations should prioritize migrant older adults with a poor health status and those with intergenerational ambivalence to reduce self-neglect in migrant older adults. Such older adults should also be encouraged to participate in community activities for more social integration.


Assuntos
Autonegligência , Migrantes , Humanos , Idoso , Estudos Transversais , Prevalência , China
9.
J Cell Physiol ; 236(1): 392-404, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32519422

RESUMO

Sestrin2 (SESN2) is a highly conservative oxidative stress protein that can regulate energy metabolism, cell proliferation, apoptosis, and mitochondria autophagy processes. It plays a role as an antioxidant in various diseases. The aims of the present study were to explore the underlying role of SESN2 after hydrogen peroxide (H2 O2 ) treatment in bovine mammary epithelial cells (MAC-T cells) by the methods of knockout or overexpression of SESN2. The results show that knockout of Sestrin2 exacerbate apoptosis, upregulate the expressions of Bax/Bcl2 in H2 O2 -treated MAC-T cells. Moreover, knockout of SESN2 also promoted reactive oxygen species (ROS) generation and exacerbated oxidative damage in H2 O2 -treated MAC-T cells. On the contrary, overexpression of SESN2 decreased apoptosis by downregulation of Bax/Bcl2 level decreased ROS generation and blocked oxidative damage in H2 O2 -treated MAC-T cells. In addition, results indicate that the Kelch-like ECH-associated protein-1 (Keap1)-nuclear factor (erythroid-derived 2) like2 (Nrf2)/antioxidant response element (ARE) signaling pathway was activated by H2 O2 ; upregulation of SESN2 could relieve oxidative stress by inducing the expression of Keap1, Nrf2, HO-1, and NDPH: quinone oxidoreductase-1 protein. In conclusion, this study demonstrates that expression of SESN2 was significantly increased after H2 O2 treatment and that SESN2 can alleviate oxidative stress and cell apoptosis in H2 O2 -treated MAC-T cells through activation of the Keap1-Nrf2/ARE pathway.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Animais , Antioxidantes/metabolismo , Apoptose/genética , Hidrolases de Éster Carboxílico/genética , Bovinos , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Células Epiteliais/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Glândulas Mamárias Animais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/genética
10.
J Cell Biochem ; 121(1): 632-641, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452251

RESUMO

Large intergenic noncoding RNA regulator of reprogramming (Linc-RoR) was first identified as a regulator to increase the emergence of induced pluripotent stem cells through reprogramming differentiated cells and is abnormal expression in a variety of malignant tumors. However, the function of Linc-RoR in pancreatic cancer progression needs further clarification. The data from this study demonstrated that Linc-RoR knockdown suppressed cell proliferative capacity and colony formation, while Linc-RoR overexpression promoted these behaviors. In particular, Linc-RoR overexpression promoted the level of mesenchymal markers, inhibited the expression of epithelial markers, as well as enhanced pancreatic cancer cells migration and invasion, whereas Linc-RoR knockdown inhibited the expression of mesenchymal markers, promoted the expression of epithelial markers, as well as weakened pancreatic cancer cells migration and invasion. Further study revealed that Linc-RoR knockdown brought about a significant fall in YAP phosphorylation and a rise in total YAP, while Linc-RoR overexpression produced the opposite results. Specifically, Linc-RoR promoted YAP in the cytoplasm into the nucleus. Taken together, we conjectured that Linc-RoR promoted proliferation, migration, and invasion of pancreatic cancer cells by activating the Hippo/YAP pathway. YAP might be an underlying target of Linc-RoR and mediate epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC); thus, Linc-RoR might be a very meaningful biomarker for PC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Via de Sinalização Hippo , Humanos , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
11.
Plant Biotechnol J ; 18(1): 185-194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199059

RESUMO

Heterosis, or hybrid vigour, is a predominant phenomenon in plant genetics, serving as the basis of crop hybrid breeding, but the causative loci and genes underlying heterosis remain unclear in many crops. Here, we present a large-scale genetic analysis using 5360 offsprings from three elite maize hybrids, which identifies 628 loci underlying 19 yield-related traits with relatively high mapping resolutions. Heterotic pattern investigations of the 628 loci show that numerous loci, mostly with complete-incomplete dominance (the major one) or overdominance effects (the secondary one) for heterozygous genotypes and nearly equal proportion of advantageous alleles from both parental lines, are the major causes of strong heterosis in these hybrids. Follow-up studies for 17 heterotic loci in an independent experiment using 2225 F2 individuals suggest most heterotic effects are roughly stable between environments with a small variation. Candidate gene analysis for one major heterotic locus (ub3) in maize implies that there may exist some common genes contributing to crop heterosis. These results provide a community resource for genetics studies in maize and new implications for heterosis in plants.


Assuntos
Loci Gênicos , Vigor Híbrido , Zea mays/genética , Alelos , Genoma de Planta , Heterozigoto , Fenótipo
12.
J Cell Biochem ; 120(9): 15790-15799, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090961

RESUMO

As an oncogene, IQ-domain GTPase-activating protein 1 (IQGAP1) regulates the epithelial-mesenchymal transition (EMT) of several cancers, such as breast cancer, thyroid cancer, and esophageal squamous cell carcinoma. However, the role of the scaffold protein IQGAP1 on EMT in gastric cancer remains unclear. Therefore, the present work was performed to address the question. Our results showed that IQGAP1 expression is upregulated in human gastric cancer specimens and cell lines. Furthermore, IQGAP1 knockdown inhibited the migratory ability of gastric cancer cells and reduced the expression of mesenchymal phenotype markers, including Slug, ß-catenin, Snail, Vimentin, and N-cadherin, as well as vascular endothelial growth factor-A (VEGF-A) secretion in gastric cancer cells. Conversely, IQGAP1 downregulation increased the epithelial phenotype marker E-cadherin. Furthermore, IQGAP1 silencing not only downregulated hypoxia-inducible transcription factor 1α (HIF1α) but also limited its translocation from the cytosol to the nucleus. Collectively, our results indicated that EMT was regulated by IQGAP1, which was associated with VEGF-A, since other data demonstrated that HIF1α was involved in VEGF-A expression. Therefore, we speculated that IQGAP1 regulated EMT of gastric cancer partially via the HIF1α/VEGF-A signaling pathway. IQGAP1 may serve as an effective therapeutic biomarker for gastric cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Gástricas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais
13.
RNA Biol ; 16(7): 940-949, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951404

RESUMO

SLC47A2 encodes MATE 2-K in the kidney, which mediates the secretion of certain endogenous and exogenous compounds. SLC47A2 was dramatically repressed in patients with renal cell carcinoma (RCC), and a lower level of SLC47A2 might act as a negative prognostic marker, although the mechanism is not well understood. In this study, we aimed to investigate the mechanism via which SLC47A2 is downregulated in RCC. Based on the annotation information of the SLC47A2 locus available in the UCSC genome browser database, we identified a novel lncRNA, which is transcribed from the SLC47A2 locus and named it SANT1. Overexpression and knock-down assays were performed to investigate the effects of SANT1 on cis-regulation of SLC47A2. We verified the direct binding between SANT1 and SFPQ/E2F1/HDAC1 using the cross-linking and immunoprecipitation (CLIP) assay. Chromatin immunoprecipitation was performed to confirm the molecular mechanism via which SANT1 activates the transcription of the SLC47A2 coding region. We observed that SANT1 can cis-regulate its own genetic locus. In tumour-adjacent tissues, the SLC47A2 locus highly expresses SANT1, which can remove the regulatory SFPQ/E2F1/HDAC1 suppressor complex from the promoter region, thereby significantly increasing the levels of the H3K27ac modification and RNAPII binding. Owing to a low SANT1 level, the binding of this inhibitory complex in the promoter region is upregulated in RCC, which results in silencing of the SLC47A2 coding region. In conclusion, we identified a novel lncRNA and elucidated the mechanism via which it regulates SLC47A2 expression in RCC.


Assuntos
Carcinoma de Células Renais/genética , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Fator de Processamento Associado a PTB/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Células HEK293 , Humanos , Neoplasias Renais/genética , Modelos Biológicos , Conformação de Ácido Nucleico , Proteínas de Transporte de Cátions Orgânicos/genética , Ligação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
14.
An Acad Bras Cienc ; 91(4): e20180957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800698

RESUMO

The mechanism behind exercise-induced fatigue is a significant topic in the field of sports physiology. Therefore, establishing and evaluating an acute exercise-induced fatigue animal model that explores the limits of the motor system may provide greater insight into these mechanisms. Heart rate is an important quantitative parameter that accurately reflects the immediate change in physical function due to exercise load. And there is likely to be an important correlation between heart rate and behavioral performance. In this study, changes in heart rate and behavioral indexes during exercise-induced fatigue were quantitatively analyzed in rats using heart rate telemetry and video methods respectively. The behavioral indexes were used as independent variables and the degree of fatigue was used as the forecast value. Ternary quadratic function curve fitting was used to deduce a formula to calculate a fatigue score: Y = 15.2548+0.4346∙xa-0.1154∙xb+0.6826∙xc+0.0044∙xa∙xb-0.0021∙xb∙xc-0.0013∙xc∙xa-0.0023∙xa2-0.0016∙xb2 (r2=0.906). It identified a linear relationship between heart rate and exercise intensity, with a plateau in heart rate occurring during difference periods. It will serve as an effective reference for the modeling of exercise-induced fatigue. In addition, it also provides a theoretical method for analyzing the correlation between peripheral and central parameters.


Assuntos
Teste de Esforço , Fadiga , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Animais , Masculino , Modelos Animais , Ratos , Ratos Wistar , Fatores de Tempo
15.
Asian-Australas J Anim Sci ; 32(1): 63-71, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29747497

RESUMO

OBJECTIVE: The aim of the study was to investigate the effect of zinc-bearing palygorskite (Zn-Pal) on rumen fermentation by in vitro gas-production system. METHODS: In trial, 90 incubators were evenly divided into five groups: control (0% Zn-Pal), treatment I (0.2% Zn-Pal), treatment II (0.4% Zn-Pal), treatment III (0.6% Zn-Pal), and treatment IV (0.8% Zn-Pal). The contents of zinc for treatments were 0, 49, 98, 147, 196 mg/kg, respectively. The main chemical composition and microstructure of Zn-Pal was investigated by X-ray diffraction. The physicochemical features were evaluated by Zeta potential analysis, cation-exchange capacity, ethylene blue absorption and specific surface area (the Brunauer-Emmett-Teller method). In vitro gas production (GP) was recorded at 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 h incubation. Incubation was stopped at 0, 6, 12, 24, 48, and 72 h and the inoculants were tested for pH, microbial protein yield (MCP), NH3-N, volatile fatty acids (VFAs), lipopolysaccharide (LPS). RESULTS: The results showed that the GP in the treatment groups was not significantly different from the control groups (p>0.05). Compared to the control group, pH was higher at 24 h, 48 h (p<0.05), and 72 h (p<0.01) (range 6 to 7). The concentration of NH3-N in the three treatment groups was higher than in the control group at 24 h (p<0.01), meanwhile, it was lower at 48 h and 72 h (p<0.01), except in the treatment IV. The concentration of MCP in treatment I group was higher than in the control at 48 h (p<0.01). Compared with control, the LPS concentration in treatment III became lower at 12 h (p<0.05). Total VFAs in treatments were higher than in the control at 24 h, 48 h (p<0.05). CONCLUSION: These results suggest that the addition of Zn-Pal can improve the rumen fermentation, especially when adding 0.2% Zn-Pal.

17.
Water Sci Technol ; 73(7): 1591-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054730

RESUMO

Individual farmers represent the main management entities of agricultural production under the family-contract responsibility system in China, and thus play crucial roles in the prevention and control of agricultural nonpoint source (ANPS) pollution. The analysis of the farmers' perceptions of ANPS pollution as well as the factors affecting their perceptions can provide valuable information for relevant policy-making to preserve high quality water in Poyang Lake and regional quality of arable land. Through a survey titled 'Farmers' perceptions of ANPS pollution and farming behaviors in the Poyang Lake Region', the data related to the perceptions of farmers on ANPS pollution were collected. The factors that affect their awareness of ANPS pollution were identified with the method of boosted regression trees (BRT). The results indicated that the farmers had awareness of the risk of ANPS pollution to some extent, but they lacked adequate scientific knowledge. Generally, they had no consciousness about how to prevent and control ANPS pollution and did not understand techniques needed for proper scientifically sound application of fertilizers and pesticides. The main factors that influenced their perceptions of ANPS pollution are (from high to low): the ratio of total income which comes from farming, per capita farmland, age, education level, and household income. Some measures targeted to improve the prevention and control of ANPS pollution were proposed: developing modern agricultural techniques and promoting large-scale farming, increasing public campaigns related to ANPS pollution prevention and control with the goal of raising the level of awareness of farmers, and reforming the methods used to promote science and technology in agriculture and encourage the proper use of chemical fertilizers and pesticides.


Assuntos
Agricultura/métodos , Monitoramento Ambiental/métodos , Fazendeiros , Fertilizantes/análise , Lagos/química , Praguicidas/química , Poluentes Químicos da Água/química , China , Coleta de Dados , Fertilizantes/toxicidade , Humanos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade
18.
Quant Imaging Med Surg ; 14(5): 3593-3605, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720864

RESUMO

Background: The degeneration and functional decline of paravertebral muscles (PVMs) are reported to be closely linked to the incidence of degenerative lumbar scoliosis (DLS), a spinal deformity of the mature skeleton. However, the functional role and degeneration of PVMs and their relationship to the development of spinal deformities remain controversial. Therefore, the present study analyzed the morphological changes in the PVMs of patients with DLS, and explored the relationship between PVM degeneration and spinal osseous parameters. Methods: In this retrospective case-control study, we evaluated the PVM parameters of patients with DLS (n=120) and compared them with patients free of DLS (control group, n=120). The cross-sectional area (CSA) and computed tomography (CT) values of the PVM at the lumbar vertebra 1-5 levels were measured. Further, the lumbar scoliosis Cobb, lumbar lordotic, and apical vertebral rotation angles were measured on CT and radiographs in the DLS group, and the relationship between PVM changes and these factors was analyzed. Results: In the control group, the PVM CSA and CT values differed insignificantly between the bilateral sides at all levels (P>0.05). In the DLS group, the CSAs of the multifidus (MF) and erector spinae (ES) were larger on the convex side than the concave side (P>0.05), whereas that of the psoas major (PM) was smaller on the convex side than the concave side (P<0.05). The CT value of the PVM was lower on the convex side at all levels (P<0.05). The CSA and CT values on both sides of the patients were lower in the DLS group than the control group at all levels (P<0.05). Further, the degree of PVM asymmetry at the apical vertebral level was positively correlated with the lumbar scoliosis (P<0.01) and apical vertebral rotation angles (P<0.05), but negatively correlated with the lumbar lordotic angle (P<0.05). Conclusions: Asymmetric degeneration of the PVM was observed bilaterally in DLS patients, and the degeneration was more pronounced on the concave side than the convex side. This asymmetrical degeneration was closely associated with the severity of lumbar scoliosis, vertebral rotation, and loss of lumbar lordosis, and a stronger correlation was observed with the MF and ES than with the PM.

19.
Plants (Basel) ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38592868

RESUMO

Acacia melanoxylon is a fast-growing macrophanerophyte with strong adaptability whose leaf enables heteromorphic development. Light is one of the essential environmental factors that induces the development of the heteroblastic leaf of A. melanoxylon, but its mechanism is unclear. In this study, the seedlings of A. melanoxylon clones were treated with weak light (shading net with 40% of regular light transmittance) and normal light (control) conditions for 90 d and a follow-up observation. The results show that the seedlings' growth and biomass accumulation were inhibited under weak light. After 60 days of treatment, phyllodes were raised under the control condition while the remaining compound was raised under weak light. The balance of root, stem, and leaf biomass changed to 15:11:74 under weak light, while it was 40:15:45 under control conditions. After comparing the anatomical structures of the compound leaves and phyllode, they were shown to have their own strategies for staying hydrated, while phyllodes were more able to control water loss and adapt to intense light. The compound leaves exhibited elevated levels of K, Cu, Ca, and Mg, increased antioxidant enzyme activity and proline content, and higher concentrations of chlorophyll a, carotenoids, ABA, CTK, and GA. However, they displayed a relatively limited photosynthetic capacity. Phyllodes exhibited higher levels of Fe, cellulose, lignin, IAA content, and high photosynthetic capacity with a higher maximum net photosynthetic rate, light compensation point, dark respiration rate, and water use efficiency. The comparative analysis of compound leaves and phyllodes provides a basis for understanding the diverse survival strategies that heteroblastic plants employ to adapt to environmental changes.

20.
Sci China Life Sci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38676814

RESUMO

Plant genomics and crop breeding are at the intersection of biotechnology and information technology. Driven by a combination of high-throughput sequencing, molecular biology and data science, great advances have been made in omics technologies at every step along the central dogma, especially in genome assembling, genome annotation, epigenomic profiling, and transcriptome profiling. These advances further revolutionized three directions of development. One is genetic dissection of complex traits in crops, along with genomic prediction and selection. The second is comparative genomics and evolution, which open up new opportunities to depict the evolutionary constraints of biological sequences for deleterious variant discovery. The third direction is the development of deep learning approaches for the rational design of biological sequences, especially proteins, for synthetic biology. All three directions of development serve as the foundation for a new era of crop breeding where agronomic traits are enhanced by genome design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA