Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 170(6): 1234-1246.e14, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823560

RESUMO

AMPA receptors mediate fast excitatory neurotransmission in the mammalian brain and transduce the binding of presynaptically released glutamate to the opening of a transmembrane cation channel. Within the postsynaptic density, however, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs), yielding a receptor complex with altered gating kinetics, pharmacology, and pore properties. Here, we elucidate structures of the GluA2-TARP γ2 complex in the presence of the partial agonist kainate or the full agonist quisqualate together with a positive allosteric modulator or with quisqualate alone. We show how TARPs sculpt the ligand-binding domain gating ring, enhancing kainate potency and diminishing the ensemble of desensitized states. TARPs encircle the receptor ion channel, stabilizing M2 helices and pore loops, illustrating how TARPs alter receptor pore properties. Structural and computational analysis suggests the full agonist and modulator complex harbors an ion-permeable channel gate, providing the first view of an activated AMPA receptor.


Assuntos
Canais de Cálcio/química , Receptores de AMPA/química , Animais , Microscopia Crioeletrônica , Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/química , Ácido Caínico/farmacologia , Modelos Moleculares , Ácido Quisquálico/química , Ácido Quisquálico/farmacologia , Ratos , Receptores de AMPA/agonistas
2.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630723

RESUMO

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Prótons , Humanos , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Canais de Potássio de Domínios Poros em Tandem/metabolismo
3.
Arch Biochem Biophys ; 754: 109959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490311

RESUMO

Electrical synapses are essential components of neural circuits. Neuronal signal transduction across electrical synapses is primarily mediated by gap junction channels composed of Connexin36 (Cx36), the lack of which causes impaired electrical coupling between certain neurons including cortical interneurons and thalamic reticular nucleus (TRN) neurons. However, the structural basis underlying Cx36 function and assembly remains elusive. Recently, Lee et al. reported cryo-EM structures of Cx36, thus provided first insights of its gating mechanism. Here, we report a consistent cryo-EM structure of Cx36 determined in parallel, and describe unique interactions underpinning its assembly mechanism in complementary to the competing work. In particular, we found non-canonical electrostatic interactions between protomers from opposing hemichannels and a steric complementary site between adjacent protomers within a hemichannel, which together provide a structural explanation for the assembly specificity in homomeric and heteromeric gap junction channels.


Assuntos
Sinapses Elétricas , Proteína delta-2 de Junções Comunicantes , Conexinas/química , Conexinas/metabolismo , Microscopia Crioeletrônica , Sinapses Elétricas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos , Neurônios/metabolismo , Subunidades Proteicas , Humanos
4.
Nature ; 536(7614): 108-11, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27368053

RESUMO

Fast excitatory neurotransmission in the mammalian central nervous system is largely carried out by AMPA-sensitive ionotropic glutamate receptors. Localized within the postsynaptic density of glutamatergic spines, AMPA receptors are composed of heterotetrameric receptor assemblies associated with auxiliary subunits, the most common of which are transmembrane AMPA receptor regulatory proteins (TARPs). The association of TARPs with AMPA receptors modulates receptor trafficking and the kinetics of receptor gating and pharmacology. Here we report the cryo-electron microscopy (cryo-EM) structure of the homomeric rat GluA2 AMPA receptor saturated with TARP γ2 subunits, which shows how the TARPs are arranged with four-fold symmetry around the ion channel domain and make extensive interactions with the M1, M2 and M4 transmembrane helices. Poised like partially opened 'hands' underneath the two-fold symmetric ligand-binding domain (LBD) 'clamshells', one pair of TARPs is juxtaposed near the LBD dimer interface, whereas the other pair is near the LBD dimer-dimer interface. The extracellular 'domains' of TARP are positioned to not only modulate LBD clamshell closure, but also affect conformational rearrangements of the LBD layer associated with receptor activation and desensitization, while the TARP transmembrane domains buttress the ion channel pore.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Receptores de AMPA/metabolismo , Receptores de AMPA/ultraestrutura , Animais , Canais de Cálcio/química , Ativação do Canal Iônico , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Ratos , Receptores de AMPA/química
5.
Nature ; 499(7458): 364-8, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23770568

RESUMO

Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source, such as glucose, represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression. In enteric bacteria, the key player of carbon catabolite repression is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIA(Glc)). It is known that unphosphorylated EIIA(Glc) binds to and inhibits a variety of transporters when glucose is available. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIA(Glc)-transporter complexes. Here we present the 3.9 Å crystal structure of Escherichia coli EIIA(Glc) in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIA(Glc) molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half-maximal inhibitory concentrations of the full-length EIIA(Glc) and an amino-terminal truncation mutant differ by 60-fold, consistent with the hypothesis that the amino-terminal region, disordered in the crystal structure, functions as a membrane anchor to increase the effective EIIA(Glc) concentration at the membrane. Together these data suggest a model of how the central regulatory protein EIIA(Glc) allosterically inhibits maltose uptake in E. coli.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carbono/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(45): 18132-7, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145421

RESUMO

ATP-binding cassette (ABC) transporters are molecular pumps that harness the chemical energy of ATP hydrolysis to translocate solutes across the membrane. The substrates transported by different ABC transporters are diverse, ranging from small ions to large proteins. Although crystal structures of several ABC transporters are available, a structural basis for substrate recognition is still lacking. For the Escherichia coli maltose transport system, the selectivity of sugar binding to maltose-binding protein (MBP), the periplasmic binding protein, does not fully account for the selectivity of sugar transport. To obtain a molecular understanding of this observation, we determined the crystal structures of the transporter complex MBP-MalFGK2 bound with large malto-oligosaccharide in two different conformational states. In the pretranslocation structure, we found that the transmembrane subunit MalG forms two hydrogen bonds with malto-oligosaccharide at the reducing end. In the outward-facing conformation, the transmembrane subunit MalF binds three glucosyl units from the nonreducing end of the sugar. These structural features explain why modified malto-oligosaccharides are not transported by MalFGK2 despite their high binding affinity to MBP. They also show that in the transport cycle, substrate is channeled from MBP into the transmembrane pathway with a polarity such that both MBP and MalFGK2 contribute to the overall substrate selectivity of the system.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Conformação Proteica , Cristalização , Proteínas Ligantes de Maltose/química , Estrutura Molecular , Especificidade por Substrato
7.
Curr Opin Struct Biol ; 54: 104-111, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30825796

RESUMO

Ionotropic glutamate receptors in vertebrates are composed of three major subtypes - AMPA, kainate, and NMDA receptors - and mediate the majority of fast excitatory neurotransmission at chemical synapses of the central nervous system. Among the three major families, native AMPA receptors function as complexes with a variety of auxiliary subunits, which in turn modulate receptor trafficking, gating, pharmacology, and permeation. Despite the long history of structure-mechanism studies using soluble receptor domains or intact yet isolated receptors, structures of AMPA receptor-auxiliary subunit complexes have not been available until recent breakthroughs in single-particle cryo-electron microscopy. Single particle cryo-EM studies have, in turn, provided new insights into the structure and organization of AMPA receptor - auxiliary protein complexes and into the molecular mechanisms of AMPA receptor activation and desensitization.


Assuntos
Receptores de AMPA/química , Receptores de AMPA/metabolismo , Animais , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
8.
Science ; 364(6438): 355-362, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30975770

RESUMO

Glutamate-gated AMPA receptors mediate the fast component of excitatory signal transduction at chemical synapses throughout all regions of the mammalian brain. AMPA receptors are tetrameric assemblies composed of four subunits, GluA1-GluA4. Despite decades of study, the subunit composition, subunit arrangement, and molecular structure of native AMPA receptors remain unknown. Here we elucidate the structures of 10 distinct native AMPA receptor complexes by single-particle cryo-electron microscopy (cryo-EM). We find that receptor subunits are arranged nonstochastically, with the GluA2 subunit preferentially occupying the B and D positions of the tetramer and with triheteromeric assemblies comprising a major population of native AMPA receptors. Cryo-EM maps define the structure for S2-M4 linkers between the ligand-binding and transmembrane domains, suggesting how neurotransmitter binding is coupled to ion channel gating.


Assuntos
Receptores de AMPA/química , Animais , Encéfalo/metabolismo , Microscopia Crioeletrônica , Ativação do Canal Iônico , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Ratos , Receptores de AMPA/genética , Imagem Individual de Molécula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA