Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858069

RESUMO

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Assuntos
Balantidium , Cipriniformes , Animais , Carboidratos , Metabolismo Energético , Amido
2.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2555-2565, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899123

RESUMO

Taihu Lake has officially implemented the full fishing ban policy since October 1, 2020. We investigated fish community of Taihu Lake in the four seasons of 2020. A total of 42 fish species were collected, belonging to 6 orders, 7 families, and 33 genera. The first five dominant species ranked by the index of relative importance were Coilia nasus, Toxabramis swinhonis, Hypophthalmichthys molitrix, Hypophthalmichthys nobilis, and Salangichthys tangkahkeii. The number of C. nasus accounted for 85.1% of the total number of catches. According to the distributional characteristics of cyanobacterial blooms and aquatic plants, Taihu Lake could be divided into the northern, central, and eastern regions. There was no significant difference in catch per unit effort (CPUE) among different lake regions, but Shannon diversity index and Pielou evenness index in the eastern region was greater than in the other two regions. The CPUE, Shannon diversity index, and Pielou evenness index were significantly different among the four seasons, with the lowest CPUE in autumn and higher diversity in autumn and winter than in spring and summer. Electrical conductivity, water depth, chloride, and transparency were the main environmental factors driving the seasonal variations of fish community in Taihu Lake, while electrical conductivity, dissolved oxygen, total alkalinity, and transparency were key variables driving the spatial patterns. The results could be used as the baseline data for fish community studies in Taihu Lake after the fishing ban.


Assuntos
Cianobactérias , Lagos , Humanos , Animais , Lagos/química , Caça , Água , Estações do Ano , China , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA