Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiology ; 313(1): e231817, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39377681

RESUMO

Background MRI is highly sensitive for assessing bone marrow involvement in multiple myeloma (MM) but does not enable detection of osteolysis. Purpose To assess the diagnostic accuracy, repeatability, and reproducibility of pseudo-CT MRI sequences (zero echo time [ZTE], gradient-echo black bone [BB]) in detecting osteolytic lesions in MM using whole-body CT as the reference standard. Materials and Methods In this prospective study, consecutive patients were enrolled in our academic hospital between June 2021 and December 2022. Inclusion criteria were newly diagnosed MM, monoclonal gammopathy of undetermined significance at high risk for MM, or suspicion of progressive MM. Participants underwent ZTE and BB sequences covering the lumbar spine, pelvis, and proximal femurs as part of 3-T whole-body MRI examinations, as well as clinically indicated fluorine 18 fluorodeoxyglucose PET/CT examination within 1 month that included optimized whole-body CT. Ten bone regions and two scores (categorical score = presence/absence of osteolytic lesion; semiquantitative score = osteolytic lesion count) were assessed by three radiologists (two experienced and one unfamiliar with pseudo-CT reading) on the ZTE, BB, and whole-body CT images. The accuracy, repeatability, and reproducibility of categorical scores (according to Gwet agreement coefficients AC1 and AC2) and differences in semiquantitative scores were assessed at the per-sequence, per-region, and per-patient levels. Results A total of 47 participants (mean age, 67 years ± 11 [SD]; 27 male) were included. In experienced readers, BB and ZTE had the same high accuracy (98%) in the per-patient analysis, while BB accuracy ranged 83%-100% and ZTE accuracy ranged 74%-94% in the per-region analysis. An increase of false-negative (FN) findings in the spine ranging from +17% up to +23%, according to the lumbar vertebra, was observed using ZTE (P < .013). Regardless of the region (except coxal bones), differences in the BB score minus the ZTE score were positively skewed (P < .021). Regardless of the sequence or region, repeatability was very good (AC1 ≥0.87 for all), while reproducibility was at least good (AC2 ≥0.63 for all). Conclusion Both MRI-based ZTE and BB pseudo-CT sequences of the lumbar spine, pelvis, and femurs demonstrated high diagnostic accuracy in detecting osteolytic lesions in MM. Compared with BB, the ZTE sequence yielded more FN findings in the spine. ClinicalTrials.gov Identifier: NCT05381077 Published under a CC BY 4.0 license. Supplemental material is available for this article.


Assuntos
Imageamento por Ressonância Magnética , Mieloma Múltiplo , Osteólise , Imagem Corporal Total , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Masculino , Feminino , Estudos Prospectivos , Idoso , Osteólise/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Imagem Corporal Total/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Sensibilidade e Especificidade , Idoso de 80 Anos ou mais
2.
Eur Radiol ; 33(1): 244-257, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35925384

RESUMO

OBJECTIVES: To compare the diagnostic accuracy of a single T2 Dixon sequence to the combination T1+STIR as anatomical sequences used for detecting tumoral bone marrow lesions in whole-body MRI (WB-MRI) examinations. METHODS: Between January 2019 and January 2020, seventy-two consecutive patients (55 men, 17 women, median age = 66 years) with solid (prostate, breast, neuroendocrine) cancers at high risk of metastasis or proven multiple myeloma (MM) prospectively underwent a WB-MRI examination including coronal T1, STIR, T2 Dixon and axial diffusion-weighted imaging sequences. Two radiologists independently assessed the combination of T1+STIR sequences and the fat+water reconstructions from the T2 Dixon sequence. The reference standard was established by consensus reading of WB-MRI and concurrent imaging available at baseline and at 6 months. Repeatability and reproducibility of MRI scores (presence and semi-quantitative count of lesions), image quality (SNR: signal-to-noise, CNR: contrast-to-noise, CRR: contrast-to-reference ratios), and diagnostic characteristics (Se: sensitivity, Sp: specificity, Acc: accuracy) were assessed per-skeletal region and per-patient. RESULTS: Repeatability and reproducibility were at least good regardless of the score, region, and protocol (0.67 ≤ AC1 ≤ 0.98). CRR was higher on T2 Dixon fat compared to T1 (p < 0.0001) and on T2 Dixon water compared to STIR (p = 0.0128). In the per-patient analysis, Acc of the T2 Dixon fat+water was higher than that of T1+STIR for the senior reader (Acc = +0.027 [+0.025; +0.029], p < 0.0001) and lower for the junior reader (Acc = -0.029 [-0.031; -0.027], p < 0.0001). CONCLUSIONS: A single T2 Dixon sequence with fat+water reconstructions offers similar reproducibility and diagnostic accuracy as the recommended combination of T1+STIR sequences and can be used for skeletal screening in oncology, allowing significant time-saving. KEY POINTS: • Replacement of the standard anatomic T1 + STIR WB-MRI protocol by a single T2 Dixon sequence drastically shortens the examination time without loss of diagnostic accuracy. • A protocol based on fat + water reconstructions from a single T2 Dixon sequence offers similar inter-reader agreement and a higher contrast-to-reference ratio for detecting lesions compared to the standard T1 + STIR protocol. • Differences in the accuracy between the two protocols are marginal (+ 3% in favor of the T2 Dixon with the senior reader; -3% against the T2 Dixon with the junior reader).


Assuntos
Mieloma Múltiplo , Masculino , Humanos , Feminino , Idoso , Mieloma Múltiplo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Corporal Total/métodos , Imageamento por Ressonância Magnética/métodos , Água
3.
Comput Methods Programs Biomed ; 242: 107811, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742486

RESUMO

The confident detection of metastatic bone disease is essential to improve patients' comfort and increase life expectancy. Multi-parametric magnetic resonance imaging (MRI) has been successfully used for monitoring of metastatic bone disease, allowing for comprehensive and holistic evaluation of the total tumour volume and treatment response assessment. The major challenges of radiological reading of whole-body MRI come from the amount of data to be reviewed and the scattered distribution of metastases, often of complex shapes. This makes bone lesion detection and quantification demanding for a radiologist and prone to error. Additionally, whole-body MRI are often corrupted with multiple spatial and intensity distortions, which further degrade the performance of image reading and image processing algorithms. In this work we propose a fully automated computer-aided diagnosis system for the detection and segmentation of metastatic bone disease using whole-body multi-parametric MRI. The system consists of an extensive image preprocessing pipeline aiming at enhancing the image quality, followed by a deep learning framework for detection and segmentation of metastatic bone disease. The system outperformed state-of-the-art methodologies, achieving a detection sensitivity of 63% with a mean of 6.44 false positives per image, and an average lesion Dice coefficient of 0.53. A provided ablation study performed to investigate the relative importance of image preprocessing shows that introduction of region of interest mask and spatial registration have a significant impact on detection and segmentation performance in whole-body MRI. The proposed computer-aided diagnosis system allows for automatic quantification of disease infiltration and could provide a valuable tool during radiological examination of whole-body MRI.


Assuntos
Doenças Ósseas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Diagnóstico por Computador , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Computadores
4.
J Belg Soc Radiol ; 106(1): 19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35581974

RESUMO

Teaching Point: The diagnosis of epiploic appendagitis in case of pain in the right iliac fossa in pregnant woman shouldn't be forgotten.

5.
J Belg Soc Radiol ; 106(1): 8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284781

RESUMO

Teaching point: Unexplained persistent perineal pain poses a differential diagnosis, including pelvic nerve lesions. The rare occurrence of pelvic schwannoma is easily shown by a MRI as a T2-hyperintense enhancing mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA