Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 603-610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200312

RESUMO

The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several ß-amino acids, α,α-disubstituted-amino acids and ß-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of ß-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Escherichia coli , Código Genético , RNA de Transferência , Acilação , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Código Genético/genética , Hidroxiácidos/química , Hidroxiácidos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Ribossomos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Annu Rev Biochem ; 83: 379-408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24555827

RESUMO

Genetic code expansion and reprogramming enable the site-specific incorporation of diverse designer amino acids into proteins produced in cells and animals. Recent advances are enhancing the efficiency of unnatural amino acid incorporation by creating and evolving orthogonal ribosomes and manipulating the genome. Increasing the number of distinct amino acids that can be site-specifically encoded has been facilitated by the evolution of orthogonal quadruplet decoding ribosomes and the discovery of mutually orthogonal synthetase/tRNA pairs. Rapid progress in moving genetic code expansion from bacteria to eukaryotic cells and animals (C. elegans and D. melanogaster) and the incorporation of useful unnatural amino acids has been aided by the development and application of the pyrrolysyl-transfer RNA (tRNA) synthetase/tRNA pair for unnatural amino acid incorporation. Combining chemoselective reactions with encoded amino acids has facilitated the installation of posttranslational modifications, as well as rapid derivatization with diverse fluorophores for imaging.


Assuntos
Escherichia coli/genética , Código Genético , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Animais , Caenorhabditis elegans , Drosophila melanogaster , Evolução Molecular , Deleção de Genes , Genoma , Engenharia de Proteínas/métodos , RNA de Transferência/química , Ribossomos/química , Saccharomyces cerevisiae/genética
3.
Genes Dev ; 36(3-4): 210-224, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35177536

RESUMO

3' end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3' end of the mature transcript, which is important for mRNA localization, translation, and stability. Cleavage must therefore be tightly regulated. Here, we reconstituted specific and efficient 3' endonuclease activity of human CPSF with purified proteins. This required the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm), and, importantly, the multidomain protein RBBP6. Unlike its yeast homolog Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to humans. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in mRNA processing.


Assuntos
Proteínas de Ligação a DNA , Precursores de RNA , Ubiquitina-Proteína Ligases , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Nature ; 619(7970): 555-562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380776

RESUMO

Whole-genome synthesis provides a powerful approach for understanding and expanding organism function1-3. To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)-a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)-a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers1,4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome-a key intermediate in its total synthesis1-from five episomes in 10 days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly5,6, along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections1,7,8, we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months.


Assuntos
Cromossomos Artificiais Bacterianos , DNA , Escherichia coli , Genoma Bacteriano , Biologia Sintética , Humanos , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Biologia Sintética/métodos , Cromossomos Artificiais Bacterianos/genética , Éxons , Íntrons , Quadruplex G , Elementos Nucleotídeos Longos e Dispersos/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Oligodesoxirribonucleotídeos/biossíntese , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Fatores de Tempo
5.
Mol Cell ; 81(23): 4891-4906.e8, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739874

RESUMO

The ring-like structural maintenance of chromosomes (SMC) complex MukBEF folds the genome of Escherichia coli and related bacteria into large loops, presumably by active DNA loop extrusion. MukBEF activity within the replication terminus macrodomain is suppressed by the sequence-specific unloader MatP. Here, we present the complete atomic structure of MukBEF in complex with MatP and DNA as determined by electron cryomicroscopy (cryo-EM). The complex binds two distinct DNA double helices corresponding to the arms of a plectonemic loop. MatP-bound DNA threads through the MukBEF ring, while the second DNA is clamped by the kleisin MukF, MukE, and the MukB ATPase heads. Combinatorial cysteine cross-linking confirms this topology of DNA loop entrapment in vivo. Our findings illuminate how a class of near-ubiquitous DNA organizers with important roles in genome maintenance interacts with the bacterial chromosome.


Assuntos
Proteínas Cromossômicas não Histona/química , Cromossomos/ultraestrutura , Microscopia Crioeletrônica/métodos , DNA/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Cromossomos Bacterianos , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Dimerização , Escherichia coli/metabolismo , Técnicas Genéticas , Genoma Bacteriano , Complexos Multiproteicos/química , Photorhabdus , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Coesinas
6.
Nature ; 602(7898): 701-707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173328

RESUMO

Hydrolase enzymes, including proteases, are encoded by 2-3% of the genes in the human genome and 14% of these enzymes are active drug targets1. However, the activities and substrate specificities of many proteases-especially those embedded in membranes-and other hydrolases remain unknown. Here we report a strategy for creating mechanism-based, light-activated protease and hydrolase substrate traps in complex mixtures and live mammalian cells. The traps capture substrates of hydrolases, which normally use a serine or cysteine nucleophile. Replacing the catalytic nucleophile with genetically encoded 2,3-diaminopropionic acid allows the first step reaction to form an acyl-enzyme intermediate in which a substrate fragment is covalently linked to the enzyme through a stable amide bond2; this enables stringent purification and identification of substrates. We identify new substrates for proteases, including an intramembrane mammalian rhomboid protease RHBDL4 (refs. 3,4). We demonstrate that RHBDL4 can shed luminal fragments of endoplasmic reticulum-resident type I transmembrane proteins to the extracellular space, as well as promoting non-canonical secretion of endogenous soluble endoplasmic reticulum-resident chaperones. We also discover that the putative serine hydrolase retinoblastoma binding protein 9 (ref. 5) is an aminopeptidase with a preference for removing aromatic amino acids in human cells. Our results exemplify a powerful paradigm for identifying the substrates and activities of hydrolase enzymes.


Assuntos
Peptídeo Hidrolases , Serina Endopeptidases , Animais , Proteínas de Ciclo Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias , Peptídeo Hidrolases/metabolismo , Serina/metabolismo , Especificidade por Substrato
7.
Nat Rev Genet ; 22(3): 169-184, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33318706

RESUMO

The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.


Assuntos
Reprogramação Celular/genética , Código Genético/genética , Aminoácidos/genética , Animais , Códon/genética , DNA/genética , Humanos , Biossíntese de Proteínas/genética , Proteínas/genética
8.
Nature ; 579(7800): 603-608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132710

RESUMO

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Assuntos
Acetaldeído/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , Reparo do DNA , Replicação do DNA/fisiologia , DNA/química , Etanol/química , Anemia de Fanconi/metabolismo , Animais , Cisplatino/química , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Etanol/farmacologia , Mutagênese/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(21): e2301330120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186824

RESUMO

The hypothalamic suprachiasmatic nucleus (SCN) is the master mammalian circadian clock. Its cell-autonomous timing mechanism, a transcriptional/translational feedback loop (TTFL), drives daily peaks of neuronal electrical activity, which in turn control circadian behavior. Intercellular signals, mediated by neuropeptides, synchronize and amplify TTFL and electrical rhythms across the circuit. SCN neurons are GABAergic, but the role of GABA in circuit-level timekeeping is unclear. How can a GABAergic circuit sustain circadian cycles of electrical activity, when such increased neuronal firing should become inhibitory to the network? To explore this paradox, we show that SCN slices expressing the GABA sensor iGABASnFR demonstrate a circadian oscillation of extracellular GABA ([GABA]e) that, counterintuitively, runs in antiphase to neuronal activity, with a prolonged peak in circadian night and a pronounced trough in circadian day. Resolving this unexpected relationship, we found that [GABA]e is regulated by GABA transporters (GATs), with uptake peaking during circadian day, hence the daytime trough and nighttime peak. This uptake is mediated by the astrocytically expressed transporter GAT3 (Slc6a11), expression of which is circadian-regulated, being elevated in daytime. Clearance of [GABA]e in circadian day facilitates neuronal firing and is necessary for circadian release of the neuropeptide vasoactive intestinal peptide, a critical regulator of TTFL and circuit-level rhythmicity. Finally, we show that genetic complementation of the astrocytic TTFL alone, in otherwise clockless SCN, is sufficient to drive [GABA]e rhythms and control network timekeeping. Thus, astrocytic clocks maintain the SCN circadian clockwork by temporally controlling GABAergic inhibition of SCN neurons.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Relógios Circadianos/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Núcleo Supraquiasmático/metabolismo , Ácido gama-Aminobutírico/metabolismo , Mamíferos/metabolismo
10.
Nature ; 565(7737): 112-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542153

RESUMO

Many enzymes catalyse reactions that proceed through covalent acyl-enzyme (ester or thioester) intermediates1. These enzymes include serine hydrolases2,3 (encoded by one per cent of human genes, and including serine proteases and thioesterases), cysteine proteases (including caspases), and many components of the ubiquitination machinery4,5. Their important acyl-enzyme intermediates are unstable, commonly having half-lives of minutes to hours6. In some cases, acyl-enzyme complexes can be stabilized using substrate analogues or active-site mutations but, although these approaches can provide valuable insight7-10, they often result in complexes that are substantially non-native. Here we develop a strategy for incorporating 2,3-diaminopropionic acid (DAP) into recombinant proteins, via expansion of the genetic code11. We show that replacing catalytic cysteine or serine residues of enzymes with DAP permits their first-step reaction with native substrates, allowing the efficient capture of acyl-enzyme complexes that are linked through a stable amide bond. For one of these enzymes, the thioesterase domain of valinomycin synthetase12, we elucidate the biosynthetic pathway by which it progressively oligomerizes tetradepsipeptidyl substrates to a dodecadepsipeptidyl intermediate, which it then cyclizes to produce valinomycin. By trapping the first and last acyl-thioesterase intermediates in the catalytic cycle as DAP conjugates, we provide structural insight into how conformational changes in thioesterase domains of such nonribosomal peptide synthetases control the oligomerization and cyclization of linear substrates. The encoding of DAP will facilitate the characterization of diverse acyl-enzyme complexes, and may be extended to capturing the native substrates of transiently acylated proteins of unknown function.


Assuntos
Biocatálise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Valinomicina/biossíntese , beta-Alanina/análogos & derivados , Vias Biossintéticas , Cisteína/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Domínios Proteicos , Serina/metabolismo , Especificidade por Substrato , beta-Alanina/metabolismo
11.
Nature ; 569(7757): 514-518, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092918

RESUMO

Nature uses 64 codons to encode the synthesis of proteins from the genome, and chooses 1 sense codon-out of up to 6 synonyms-to encode each amino acid. Synonymous codon choice has diverse and important roles, and many synonymous substitutions are detrimental. Here we demonstrate that the number of codons used to encode the canonical amino acids can be reduced, through the genome-wide substitution of target codons by defined synonyms. We create a variant of Escherichia coli with a four-megabase synthetic genome through a high-fidelity convergent total synthesis. Our synthetic genome implements a defined recoding and refactoring scheme-with simple corrections at just seven positions-to replace every known occurrence of two sense codons and a stop codon in the genome. Thus, we recode 18,214 codons to create an organism with a 61-codon genome; this organism uses 59 codons to encode the 20 amino acids, and enables the deletion of a previously essential transfer RNA.


Assuntos
Engenharia Celular/métodos , Escherichia coli/genética , Código Genético/genética , Genoma Bacteriano/genética , Biologia Sintética/métodos , Aminoácidos/genética , Códon de Terminação/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Genes Essenciais/genética , RNA de Transferência/genética
12.
Proc Natl Acad Sci U S A ; 119(34): e2203563119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976881

RESUMO

The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal clock driving circadian rhythms of physiology and behavior that adapt mammals to environmental cycles. Disruption of SCN-dependent rhythms compromises health, and so understanding SCN time keeping will inform management of diseases associated with modern lifestyles. SCN time keeping is a self-sustaining transcriptional/translational delayed feedback loop (TTFL), whereby negative regulators inhibit their own transcription. Formally, the SCN clock is viewed as a limit-cycle oscillator, the simplest being a trajectory of successive phases that progresses through two-dimensional space defined by two state variables mapped along their respective axes. The TTFL motif is readily compatible with limit-cycle models, and in Neurospora and Drosophila the negative regulators Frequency (FRQ) and Period (Per) have been identified as state variables of their respective TTFLs. The identity of state variables of the SCN oscillator is, however, less clear. Experimental identification of state variables requires reversible and temporally specific control over their abundance. Translational switching (ts) provides this, the expression of a protein of interest relying on the provision of a noncanonical amino acid. We show that the negative regulator Cryptochrome 1 (CRY1) fulfills criteria defining a state variable: ts-CRY1 dose-dependently and reversibly suppresses the baseline, amplitude, and period of SCN rhythms, and its acute withdrawal releases the TTFL to oscillate from a defined phase. Its effect also depends on its temporal pattern of expression, although constitutive ts-CRY1 sustained (albeit less stable) oscillations. We conclude that CRY1 has properties of a state variable, but may operate among several state variables within a multidimensional limit cycle.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Criptocromos , Transporte Proteico , Núcleo Supraquiasmático , Animais , Criptocromos/metabolismo , Drosophila melanogaster , Neurospora , Núcleo Supraquiasmático/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046033

RESUMO

The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN timekeeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism.


Assuntos
Ritmo Circadiano , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo , Animais , Ritmo Circadiano/genética , Imunofluorescência , Regulação da Expressão Gênica , Camundongos , Proteínas Circadianas Period/genética , Transporte Proteico , Imagem com Lapso de Tempo
14.
Nat Rev Mol Cell Biol ; 13(3): 168-82, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22334143

RESUMO

Designer amino acids, beyond the canonical 20 that are normally used by cells, can now be site-specifically encoded into proteins in cells and organisms. This is achieved using 'orthogonal' aminoacyl-tRNA synthetase-tRNA pairs that direct amino acid incorporation in response to an amber stop codon (UAG) placed in a gene of interest. Using this approach, it is now possible to study biology in vitro and in vivo with an increased level of molecular precision. This has allowed new biological insights into protein conformational changes, protein interactions, elementary processes in signal transduction and the role of post-translational modifications.


Assuntos
Código Genético , Engenharia de Proteínas , Animais , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
15.
Nature ; 564(7736): 444-448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518861

RESUMO

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Assuntos
Evolução Molecular Direcionada , Escherichia coli , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Escherichia coli/classificação , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas/química , Ribossomos/química , Ribossomos/genética
16.
Nature ; 550(7674): 53-60, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28980641

RESUMO

Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.


Assuntos
Aminoácidos/química , Aminoácidos/genética , Código Genético/genética , Engenharia de Proteínas/métodos , Biologia Sintética/métodos , Aminoácidos/metabolismo , Animais , Códon/genética , Evolução Molecular Direcionada , Humanos , Engenharia de Proteínas/tendências , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Supressão Genética , Biologia Sintética/tendências
17.
EMBO J ; 37(8)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29510984

RESUMO

Aurora-A regulates the recruitment of TACC3 to the mitotic spindle through a phospho-dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora-A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora-A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical-repeat region of CHC, not a recognized phospho-reader domain. This potentially widespread mechanism of phospho-recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding.


Assuntos
Aurora Quinase A/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Linhagem Celular , Humanos , Proteínas Associadas aos Microtúbulos/genética , Conformação Proteica em alfa-Hélice
18.
Nature ; 539(7627): 59-64, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27776354

RESUMO

Synthetic recoding of genomes, to remove targeted sense codons, may facilitate the encoded cellular synthesis of unnatural polymers by orthogonal translation systems. However, our limited understanding of allowed synonymous codon substitutions, and the absence of methods that enable the stepwise replacement of the Escherichia coli genome with long synthetic DNA and provide feedback on allowed and disallowed design features in synthetic genomes, have restricted progress towards this goal. Here we endow E. coli with a system for efficient, programmable replacement of genomic DNA with long (>100-kb) synthetic DNA, through the in vivo excision of double-stranded DNA from an episomal replicon by CRISPR/Cas9, coupled to lambda-red-mediated recombination and simultaneous positive and negative selection. We iterate the approach, providing a basis for stepwise whole-genome replacement. We attempt systematic recoding in an essential operon using eight synonymous recoding schemes. Each scheme systematically replaces target codons with defined synonyms and is compatible with codon reassignment. Our results define allowed and disallowed synonymous recoding schemes, and enable the identification and repair of recoding at idiosyncratic positions in the genome.


Assuntos
Códon/genética , Escherichia coli/genética , Código Genético/genética , Engenharia Genética/métodos , Genoma Bacteriano/genética , Biologia Sintética/métodos , Sistemas CRISPR-Cas/genética , DNA/biossíntese , DNA/genética , Genes Bacterianos/genética , Genes Essenciais/genética , Óperon/genética , Plasmídeos/genética , Seleção Genética
19.
Angew Chem Int Ed Engl ; 61(37): e202203061, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35656865

RESUMO

We report a bioinformatic workflow and subsequent discovery of a new polyethylene terephthalate (PET) hydrolase, which we named MG8, from the human saliva metagenome. MG8 has robust PET plastic degradation activities under different temperature and salinity conditions, outperforming several naturally occurring and engineered hydrolases in degrading PET. Moreover, we genetically encoded 2,3-diaminopropionic acid (DAP) in place of the catalytic serine residue of MG8, thereby converting a PET hydrolase into a covalent binder for bio-functionalization of PET. We show that MG8(DAP), in conjunction with a split green fluorescent protein system, can be used to attach protein cargos to PET as well as other polyester plastics. The discovery of a highly active PET hydrolase from the human metagenome-currently an underexplored resource for industrial enzyme discovery-as well as the repurposing of such an enzyme into a plastic functionalization tool, should facilitate ongoing efforts to degrade and maximize reusability of PET.


Assuntos
Hidrolases , Polietilenotereftalatos , Código Genético , Humanos , Hidrolases/metabolismo , Metagenoma , Plásticos/química , Polietilenotereftalatos/química , Saliva/metabolismo
20.
J Am Chem Soc ; 143(12): 4600-4606, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750116

RESUMO

Discovering molecules that regulate closely related protein isoforms is challenging, and in many cases the consequences of isoform-specific pharmacological regulation remains unknown. RAF isoforms are commonly mutated oncogenes that serve as effector kinases in MAP kinase signaling. BRAF/CRAF heterodimers are believed to be the primary RAF signaling species, and many RAF inhibitors lead to a "paradoxical activation" of RAF kinase activity through transactivation of the CRAF protomer; this leads to resistance mechanisms and secondary tumors. It has been hypothesized that CRAF-selective inhibition might bypass paradoxical activation, but no CRAF-selective inhibitor has been reported and the consequences of pharmacologically inhibiting CRAF have remained unknown. Here, we use bio-orthogonal ligand tethering (BOLT) to selectively target inhibitors to CRAF. Our results suggest that selective CRAF inhibition promotes paradoxical activation and exemplify how BOLT may be used to triage potential targets for drug discovery before any target-selective small molecules are known.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA