Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810260

RESUMO

Snails are model organisms for studying the genetic, molecular, and developmental bases of left-right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Cefalópodes/crescimento & desenvolvimento , Cefalópodes/fisiologia , Caramujos/crescimento & desenvolvimento , Caramujos/fisiologia , Animais , Evolução Biológica , Fenômenos Mecânicos , Modelos Biológicos , Modelos Teóricos , Filogenia , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 117(1): 43-51, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843921

RESUMO

Brachiopods and mollusks are 2 shell-bearing phyla that diverged from a common shell-less ancestor more than 540 million years ago. Brachiopods and bivalve mollusks have also convergently evolved a bivalved shell that displays an apparently mundane, yet striking feature from a developmental point of view: When the shell is closed, the 2 valve edges meet each other in a commissure that forms a continuum with no gaps or overlaps despite the fact that each valve, secreted by 2 mantle lobes, may present antisymmetric ornamental patterns of varying regularity and size. Interlocking is maintained throughout the entirety of development, even when the shell edge exhibits significant irregularity due to injury or other environmental influences, which suggests a dynamic physical process of pattern formation that cannot be genetically specified. Here, we derive a mathematical framework, based on the physics of shell growth, to explain how this interlocking pattern is created and regulated by mechanical instabilities. By close consideration of the geometry and mechanics of 2 lobes of the mantle, constrained both by the rigid shell that they secrete and by each other, we uncover the mechanistic basis for the interlocking pattern. Our modeling framework recovers and explains a large diversity of shell forms and highlights how parametric variations in the growth process result in morphological variation. Beyond the basic interlocking mechanism, we also consider the intricate and striking multiscale-patterned edge in certain brachiopods. We show that this pattern can be explained as a secondary instability that matches morphological trends and data.


Assuntos
Exoesqueleto/anatomia & histologia , Exoesqueleto/crescimento & desenvolvimento , Bivalves/anatomia & histologia , Bivalves/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Evolução Biológica , Bivalves/classificação , Fenômenos Mecânicos , Modelos Anatômicos , Modelos Teóricos , Filogenia
3.
PLoS Comput Biol ; 15(7): e1007213, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356591

RESUMO

Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Modelos Biológicos , Moluscos/crescimento & desenvolvimento , Algoritmos , Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Animais , Fenômenos Biomecânicos , Padronização Corporal/fisiologia , Calcificação Fisiológica , Biologia Computacional , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Imageamento Tridimensional , Moluscos/anatomia & histologia , Moluscos/fisiologia , Morfogênese , Análise Espaço-Temporal
4.
J Exp Zool B Mol Dev Evol ; 326(7): 437-450, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27921363

RESUMO

The idea that physical processes involved in biological development underlie morphogenetic rules and channel morphological evolution has been central to the rise of evolutionary developmental biology. Here, we explore this idea in the context of seashell morphogenesis. We show that a morphomechanical model predicts the effects of variations in shell shape on the ornamental pattern in ammonites, a now extinct group of cephalopods with external chambered shell. Our model shows that several seemingly unrelated characteristics of synchronous, ontogenetic, intraspecific, and evolutionary variations in ornamental patterns among various ammonite species may all be understood from the fact that the mechanical forces underlying the oscillatory behavior of the shell secreting system scale with the cross-sectional curvature of the shell aperture. This simple morphogenetic rule, emerging from biophysical interactions during shell formation, introduced a non-random component in the production of phenotypic variation and channeled the morphological evolution of ammonites over millions of years. As such, it provides a paradigm for the concept of "developmental constraints."


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Evolução Biológica , Cefalópodes/crescimento & desenvolvimento , Fenômenos Mecânicos , Exoesqueleto/anatomia & histologia , Animais , Cefalópodes/anatomia & histologia , Fósseis , Modelos Biológicos , Morfogênese
5.
Proc Natl Acad Sci U S A ; 110(15): 6015-20, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530223

RESUMO

Convergent evolution is a phenomenon whereby similar traits evolved independently in not closely related species, and is often interpreted in functional terms. Spines in mollusk seashells are classically interpreted as having repeatedly evolved as a defense in response to shell-crushing predators. Here we consider the morphogenetic process that shapes these structures and underlies their repeated emergence. We develop a mathematical model for spine morphogenesis based on the mechanical interaction between the secreting mantle edge and the calcified shell edge to which the mantle adheres during shell growth. It is demonstrated that a large diversity of spine structures can be accounted for through small variations in control parameters of this natural mechanical process. This physical mechanism suggests that convergent evolution of spines can be understood through a generic morphogenetic process, and provides unique perspectives in understanding the phenotypic evolution of this second largest phylum in the animal kingdom.


Assuntos
Exoesqueleto/fisiologia , Evolução Biológica , Moluscos/fisiologia , Morfogênese , Algoritmos , Animais , Cálcio/química , Modelos Biológicos , Distribuição Normal , Pigmentação , Software
6.
Sci Am ; 318(4): 68-75, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29557967
7.
J Exp Zool B Mol Dev Evol ; 314(4): 303-26, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20084667

RESUMO

In recent years, developmental plasticity has received increasing attention. Specifically, some studies highlighted a possible association between shell shape and growth rates in intertidal gastropods. We use a growth vector model to study how hypothetical growth processes could underlie developmental plasticity in molluscs. It illustrates that variation in instantaneous shell growth rate can induce variability in allometric curves. Consequently, morphological variation is time-dependent. Basing our model parameters on a study documenting the results of transplants experiments of three gastropods ecomorphs, we reproduce the main aspects of the variation in size, shape, and growth rates among populations when bred in their own habitat or transplanted to another ecotype habitat. In agreement with empirical results, our simulation shows that a flatter growth profile corresponds to conditions of rapid growth. The model also allows the comparison of allometric slopes using different subdata sets that correspond to static and ontogenetic allometry. Our model highlights that depending on subdata sets, the "main effects" could be attributed to source population or environment. In addition, convergence or divergence of allometric slopes is observed depending on the subdata sets. Although there is evidence that shell shape in gastropods is to some extent growth rate dependent, gaining a general overview of the issue is challenging, in particular because of the scarcity of studies referring to allometry. We argue that the dynamics of development at the "phenotypic level" constitute a non-reducible level of investigation if one seeks to relate the observed amount of phenotypic variation to variability in the underlying factors.


Assuntos
Interpretação Estatística de Dados , Ecossistema , Modelos Biológicos , Moluscos/anatomia & histologia , Moluscos/crescimento & desenvolvimento , Animais , Simulação por Computador
8.
J Exp Zool B Mol Dev Evol ; 314(4): 280-302, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20095030

RESUMO

This article explores the close relationships between growth rate and allometries of molluscan shells. After reviewing the previous theoretical approaches devoted to the understanding of shell form and its morphogenesis, we present a free-form vector model which can simulate apertural shape changes and nonlinear allometries. Shell morphology is generated by iteratively adding a growth increment onto the last computed aperture. The first growth increment defines so-called growth vectors which are assumed to be constant in direction (relative to the last computed aperture position) during a simulation of a shell (ontogeny). These growth vectors are uniformly scaled at each time step according to various growth rate curves that are used to simulate the mantle growth over time. From the model, we derive morphometric variables that illustrate the ontogenetic trajectories in time-size-shape space. We investigate the effects of changing the growth curves types, growth rate parameters and growth vector maps on the direction, speed and patterns of ontogenetic allometries. Because this model focuses the issue on time, it highlights a plausible effect of growth rate on shell shape and illustrates some fundamental geometrical properties of the logarithmic spiral, in particular the close relationship between the size and the geometry of growth increments. This model could be used to develop a mathematically data-driven approach where experimentally obtained growth curves could be used as inputs in the model. More generally, our study recalls the role of growth rates in the generation of allometries.


Assuntos
Padronização Corporal/fisiologia , Modelos Biológicos , Moluscos/fisiologia , Animais , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA