Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 65(Pt 6): 1838-1854, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25757706

RESUMO

The microalgae of the genus Asterochloris are the preferential phycobionts in Cladonia, Lepraria and Stereocaulon lichens. Recent studies have highlighted the hidden diversity of the genus, even though phycobionts hosting species of the genus Cladonia in Mediterranean and Canarian ecosystems have been poorly explored. Phylogenetic analyses were made by concatenation of the sequences obtained with a plastid - LSU rDNA - and two nuclear - internal transcribed spacer (ITS) rDNA and actin - molecular markers of the phycobionts living in several populations of the Cladonia convoluta-Cladonia foliacea complex, Cladonia rangiformis and Cladonia cervicornis s. str. widely distributed in these areas in a great variety of substrata and habitats. A new strongly supported clade was obtained in relation to the previously published Asterochloris phylogenies. Minimum genetic variation was detected between our haplotypes and other sequences available in the GenBank database. The correct identification of the fungal partners was corroborated by the ITS rDNA barcode. In this study we provide a detailed characterization comprising chloroplast morphology, and ultrastructural and phylogenetic analyses of a novel phycobiont species, here described as Asterochloris mediterranea sp. nov. Barreno, Chiva, Moya et Skaloud. A cryopreserved holotype specimen has been deposited in the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP H 1015. We suggest the use of a combination of several nuclear and plastid molecular markers, as well as ultrastructural (transmission electron and confocal microscopy) techniques, both in culture and in the symbiotic state, to improve novel species delimitation of phycobionts in lichens.


Assuntos
Clorófitas/classificação , Líquens , Filogenia , Ascomicetos , Clorófitas/genética , Clorófitas/ultraestrutura , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Variação Genética , Região do Mediterrâneo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência de DNA , Espanha
2.
J Fungi (Basel) ; 10(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535214

RESUMO

Ramalina farinacea is a widely distributed epiphytic lichen from the Macaronesian archipelagos to Mediterranean and Boreal Europe. Previous studies have indicated a specific association between R. farinacea and Trebouxia microalgae species. Here, we examined the symbiotic interactions in this lichen and its closest allies (the so-called "R. farinacea group") across ten biogeographic subregions, spanning diverse macroclimates, analyzing the climatic niche of the primary phycobionts, and discussing the specificity of these associations across the studied area. The most common phycobionts in the "R. farinacea group" were T. jamesii and T. lynnae, which showed a preference for continentality and insularity, respectively. The Canarian endemic R. alisiosae associated exclusively with T. lynnae, while the other Ramalina mycobionts interacted with both microalgae. The two phycobionts exhibited extensive niche overlap in an area encompassing Mediterranean, temperate Europe, and Macaronesian localities. However, T. jamesii occurred in more diverse climate types, whereas T. lynnae preferred warmer and more humid climates, often close to the sea, which could be related to its tolerance to salinity. With the geographical perspective gained in this study, it was possible to show how the association with different phycobionts may shape the ecological adaptation of lichen symbioses.

3.
J Fungi (Basel) ; 9(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37998870

RESUMO

In the 1990s, a sampling network for the biomonitoring of forests using epiphytic lichen diversity was established in the eastern Iberian Peninsula. This area registered air pollution impacts by winds from the Andorra thermal power plant, as well as from photo-oxidants and nitrogen depositions from local and long-distance transport. In 1997, an assessment of the state of lichen communities was carried out by calculating the Index of Atmospheric Purity. In addition, visible symptoms of morphological injury were recorded in nine macrolichens pre-selected by the speed of symptom evolution and their wide distribution in the territory. The thermal power plant has been closed and inactive since 2020. During 2022, almost 25 years later, seven stations of this previously established biomonitoring were revaluated. To compare the results obtained in 1997 and 2022, the same methodology was used, and data from air quality stations were included. We tested if, by integrating innovative methodologies (NIRS) into biomonitoring tools, it is possible to render an integrated response. The results displayed a general decrease in biodiversity in several of the sampling plots and a generalised increase in damage symptoms in the target lichen species studied in 1997, which seem to be the consequence of a multifactorial response.

4.
Biology (Basel) ; 11(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36009823

RESUMO

Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as a new taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture and thoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 to be a model/reference organism for studying mycobiont−photobiont association patterns in lichen symbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustive characterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available. The cellular ultrastructure was studied by light, electron and confocal microscopy; physiological traits were studied as responses to different abiotic stresses. The genetic diversity was previously analyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nuclear genome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecific diversity at a biogeographical level and its specificity association patterns with the mycobiont. Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and is presented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modern proponent for the significance of symbiosis in evolution. The complete set of analyses that were carried out for its characterization is provided.

5.
Front Microbiol ; 12: 765310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003003

RESUMO

The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.

6.
Sci Rep ; 10(1): 14060, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820199

RESUMO

This study analyses the interactions among crustose and lichenicolous lichens growing on gypsum biocrusts. The selected community was composed of Acarospora nodulosa, Acarospora placodiiformis, Diploschistes diacapsis, Rhizocarpon malenconianum and Diplotomma rivas-martinezii. These species represent an optimal system for investigating the strategies used to share phycobionts because Acarospora spp. are parasites of D. diacapsis during their first growth stages, while in mature stages, they can develop independently. R. malenconianum is an obligate lichenicolous lichen on D. diacapsis, and D. rivas-martinezii occurs physically close to D. diacapsis. Microalgal diversity was studied by Sanger sequencing and 454-pyrosequencing of the nrITS region, and the microalgae were characterized ultrastructurally. Mycobionts were studied by performing phylogenetic analyses. Mineralogical and macro- and micro-element patterns were analysed to evaluate their influence on the microalgal pool available in the substrate. The intrathalline coexistence of various microalgal lineages was confirmed in all mycobionts. D. diacapsis was confirmed as an algal donor, and the associated lichenicolous lichens acquired their phycobionts in two ways: maintenance of the hosts' microalgae and algal switching. Fe and Sr were the most abundant microelements in the substrates but no significant relationship was found with the microalgal diversity. The range of associated phycobionts are influenced by thallus morphology.


Assuntos
Biodiversidade , Sulfato de Cálcio , Líquens/fisiologia , Microalgas/classificação , Solo , Simbiose , Ecossistema , Interações Hospedeiro-Parasita , Microalgas/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA