Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 122(5): 5068-5143, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34962131

RESUMO

Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.


Assuntos
Nanocompostos , Dispositivos Eletrônicos Vestíveis , Eletrônica
2.
Acc Chem Res ; 52(1): 73-81, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586292

RESUMO

Soft bioelectronics intended for application to wearable and implantable biomedical devices have attracted great attention from material scientists, device engineers, and clinicians because of their extremely soft mechanical properties that match with a variety of human organs and tissues, including the brain, heart, skin, eye, muscles, and neurons, as well as their wide diversity in device designs and biomedical functions that can be finely tuned for each specific case of applications. These unique features of the soft bioelectronics have allowed minimal mechanical and biological damage to organs and tissues integrated with bioelectronic devices and reduced side effects including inflammation, skin irritation, and immune responses even after long-term biointegration. These favorable properties for biointegration have enabled long-term monitoring of key biomedical indicators with high signal-to-noise ratio, reliable diagnosis of the patient's health status, and in situ feedback therapy with high treatment efficacy optimized for the requirements of each specific disease model. These advantageous device functions and performances could be maximized by adopting novel high-quality soft nanomaterials, particularly ultrathin two-dimensional (2D) materials, for soft bioelectronics. Two-dimensional materials are emerging material candidates for the channels and electrodes in electronic devices (semiconductors and conductors, respectively). They can also be applied to various biosensors and therapeutic actuators in soft bioelectronics. The ultrathin vertically layered nanostructure, whose layer number can be controlled in the synthesis step, and the horizontally continuous planar molecular structure, which can be found over a large area, have conferred unique mechanical, electrical, and optical properties upon the 2D materials. The atomically thin nanostructure allows mechanical softness and flexibility and high optical transparency of the device, while the large-area continuous thin film structure allows efficient carrier transport within the 2D plane. In addition, the quantum confinement effect in the atomically thin 2D layers introduces interesting optoelectronic properties and superb photodetecting capabilities. When fabricated as soft bioelectronic devices, these interesting and useful material features of the 2D materials enable unconventional device functions in biological and optical sensing, as well as superb performance in electrical and biochemical therapeutic actuations. In this Account, we first summarize the distinctive characteristics of the 2D materials in terms of the mechanical, optical, chemical, electrical, and biomedical aspects and then present application examples of the 2D materials to soft bioelectronic devices based on each aforementioned unique material properties. Among various kinds of 2D materials, we particularly focus on graphene and MoS2. The advantageous material features of graphene and MoS2 include ultrathin thickness, facile functionalization, large surface-to-volume ratio, biocompatibility, superior photoabsorption, and high transparency, which allow the development of high-performance multifunctional soft bioelectronics, such as a wearable glucose patch, a highly sensitive humidity sensor, an ultrathin tactile sensor, a soft neural probe, a soft retinal prosthesis, a smart endoscope, and a cell culture platform. A brief comparison of their characteristics and performances is also provided. Finally, this Account concludes with a future outlook on next-generation soft bioelectronics based on 2D materials.


Assuntos
Dissulfetos/química , Grafite/química , Molibdênio/química , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Eletrodos Implantados , Humanos
3.
NMR Biomed ; 28(2): 168-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448225

RESUMO

Molecular imaging can be a breakthrough tool for the investigation of the behavior and ultimate feasibility of transplanted human mesenchymal stem cells (hMSCs) inside the body, and for the development of guidelines and recommendations based on the treatment and evaluation of stem cell therapy for patients. The goals of this study were to evaluate the multilineage differentiation ability of hMSCs expressing an MRI reporter, human ferritin heavy chain (FTH) and to investigate the feasibility of using FTH-based MRI to provide noninvasive imaging of transplanted hMSCs. The transduction of FTH and green fluorescence protein (GFP) did not influence the expression of the mesenchymal stem cell surface markers (CD29+/CD105+/CD34-/CD45-) or the self-renewal marker genes [octamer-binding transcription factor 4 (OCT-4) and SRY (sex determining region Y)-box 2 (Sox-2)], cell viability, migration ability and the release of cytokines [interleukin-5 (IL-5), IL-10, IL-12p70, tumor necrosis factor-α (TNF-α)]. FTH-hMSCs retained the capacity to differentiate into adipogenic, chondrogenic, osteogenic and neurogenic lineages. The transduction of FTH led to a significant enhancement in cellular iron storage capacity and caused hypointensity and a significant increase in R2 * values of FTH-hMSC-collected phantoms and FTH-hMSC-transplanted sites of the brain, as shown by in vitro and in vivo MRI performed at 9.4 T, compared with control hMSCs. This study revealed no differences in biological characteristics between hMSCs and FTH-hMSCs and, therefore, these cells could be used for noninvasive monitoring with MRI during stem cell therapy for brain injury. Our study suggests the use of FTH for in vivo long-term tracking and ultimate fate of hMSCs without alteration of their characteristics and multidifferentiation potential.


Assuntos
Diferenciação Celular , Linhagem da Célula , Ferritinas/metabolismo , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ferro/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Nus , Neurônios/citologia , Imagens de Fantasmas
4.
J Proteome Res ; 12(8): 3738-45, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23795807

RESUMO

This study was designed to investigate changes in the metabolites in the intracellular fluid of the pancreatic ß-cell line INS-1 to identify potential early and late biomarkers for predicting hypoxia-induced cell death. INS-1 cells were incubated under normoxic conditions (95% air, 5% CO2) or hypoxic conditions (1% O2, 5% CO2, 95% N2) for 2, 4, 6, 12, or 24 h. The biological changes indicating the process of cell death were analyzed using the MTT assay, flow cytometry, Western blotting, and immunostaining. Changes in the metabolic profiles from cell lysates were identified using ¹H nuclear magnetic resonance (¹H NMR) spectroscopy, and the spectra were analyzed by the multivariate model Orthogonal Projections to Latent Structure-Discriminant Analysis. Cell viability decreased approximately 40% after 12-24 h of hypoxia, coincident with a high level of cleaved caspase-3. A high level of HIF-1α was detected in the 12-24 h hypoxic conditions. The metabolite profiles were altered according to the degree of exposure to hypoxia. A spectral analysis showed significant differences in creatine-containing compounds at the early stage (2-6 h) and taurine-containing compounds at the late stage (12-24 h), with the detection of HIF-1α and cleaved caspase-3 in cells exposed to hypoxia compared to normoxia. Glycerophosphocholine decreased during the early stage hypoxia. The change in taurine- and creatine-containing compounds and choline species could be involved in the ß-cell death process as inhibitors or activators of cell death. Our results imply that assessment by ¹H NMR spectroscopy would be a useful tool to predict the cell death process and to identify molecules regulating hypoxia-induced cell death mechanisms.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/genética , Oxigênio/farmacologia , Animais , Biomarcadores/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Análise Discriminante , Expressão Gênica/efeitos dos fármacos , Glicerilfosforilcolina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/biossíntese , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Espectroscopia de Ressonância Magnética , Ratos
5.
Dev Biol ; 365(1): 259-66, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387209

RESUMO

Retinoic acid receptors (RARs), which are involved in retinoic acid signal transduction, are essential for maintaining the differentiated state of epithelial tissues. Mammary glands are skin appendages whose development is initiated through continuous cell-cell interactions between the ectoderm and the adjacent mesenchyme. Considerable progress has been made in elucidating the molecular basis of these interactions in mammary gland formation in mouse embryos, including the network of initiating signals comprising Fgfs, Wnts and Bmps involved in gland positioning and the transcription factors, Tbx3 and Lef1, essential for mammary gland development. Here, we provide evidence that retinoic acid signaling may also be involved in mammary gland development. We documented the expression of gene-encoding enzymes that produce retinoic acid (Raldh2) and enzymes that degrade it (Cyp26a1, Cyp26b1). We also analyzed the expression of RAR-ß, a direct transcriptional target of retinoic acid signaling. Raldh2 and RAR-ß were expressed in E10-E10.5 mouse embryos in somites adjacent to the flank region where mammary buds 2, 3 and 4 develop. These expression patterns overlapped with that of Fgf10, which is known to be required for mammary gland formation. RAR-ß was also expressed in the mammary mesenchyme in E12 mouse embryos; RAR-ß protein was expressed in the mammary epithelium and developing fat pad. Retinoic acid levels in organ cultures of E10.5 mouse embryo flanks were manipulated by adding either retinoic acid or citral, a retinoic acid synthesis inhibitor. Reduced retinoic acid synthesis altered the expression of genes involved in retinoic acid homeostasis and also demonstrated that retinoic acid signaling is required for Tbx3 expression, whereas high levels of retinoic acid signaling inhibited Bmp4 expression and repressed Wnt signaling. The results of the experiments using RNAi against Tbx3 and Wnt10b suggested feedback interactions that regulate retinoic acid homeostasis in mammary gland-forming regions. We produced a molecular model for mammary gland initiation that incorporated retinoic acid signaling.


Assuntos
Glândulas Mamárias Animais/embriologia , Transdução de Sinais , Tretinoína/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/fisiologia , Mesoderma/embriologia , Mesoderma/fisiologia , Camundongos , Modelos Moleculares , Interferência de RNA , Receptores do Ácido Retinoico/fisiologia , Transdução de Sinais/genética , Proteínas com Domínio T/fisiologia , Proteínas Wnt/fisiologia
6.
Cell Tissue Res ; 353(3): 425-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23733266

RESUMO

MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translational repression or RNA degradation. The aberrant expression of miRNAs might be involved in human diseases, including cancer. The expression of miR-206 in estrogen receptor alpha (ER-α)-positive human breast cancer tissues is well known. However, the expression and regulation of miR-206 in the developing mammary gland has not yet been studied. To understand the effects of miR-206 on mammary gland development, we have profiled gene expression in scramble-transfected and miR-206-overexpressing developing mammary buds. The genes that are potentially regulated by miR-206 in the mammary epithelium and/or mesenchyme, such as Tachykinin1 and Gata3, are known to be breast cancer markers. The expression of Wnt, which is involved in gland positioning, and of the transcription factors Tbx3 and Lef1, which are essential for mammary gland development, changes after miR-206 overexpression. Using a mammary bud in vitro culture system, we have demonstrated that miR-206 acts downstream of ER-α during mammary gland growth. Thus, miR-206 might be a novel candidate for morphogenesis during the initiation of mammary gland formation and the regulation of genes related to mammary gland development and breast cancer.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândulas Mamárias Animais/embriologia , MicroRNAs/biossíntese , Organogênese/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/genética , Feminino , Fator de Transcrição GATA3/biossíntese , Fator de Transcrição GATA3/genética , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Fator 1 de Ligação ao Facilitador Linfoide/genética , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Taquicininas/biossíntese , Taquicininas/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
7.
Histochem Cell Biol ; 137(6): 791-800, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22350174

RESUMO

Tooth morphogenesis is regulated by sequential and reciprocal interaction between oral epithelium and neural-crest-derived ectomesenchyme. The interaction is controlled by various signal molecules such as bone morphogenetic protein (BMP), Hedgehog, fibroblast growth factor (FGF), and Wnt. Zeb family is known as a transcription factor, which is essential for neural development and neural-crest-derived tissues, whereas the role of the Zeb family in tooth development remains unclear. Therefore, this study aimed to investigate the expression profiles of Zeb1 and Zeb2 during craniofacial development focusing on mesenchyme of palate, hair follicle, and tooth germ from E12.5 to E16.5. In addition, we examined the interaction between Zeb family and BMP4 during tooth development. Both Zeb1 and Zeb2 were expressed at mesenchyme of the palate, hair follicle, and tooth germ throughout the stages. In the case of tooth germ at the cap stage, the expression of Zeb1 and Zeb2 was lost in epithelium-separated dental mesenchyme. However, the expression of Zeb1 and Zeb2 in the dental mesenchyme was recovered by Bmp4 signaling via BMP4-soaked bead and tissue recombination. Our results suggest that Zeb1 and Zeb2, which were mediated by BMP4, play an important role in neural-crest-derived craniofacial organ morphogenesis, such as tooth development.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Repressoras/genética , Dente/embriologia , Animais , Embrião de Mamíferos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Odontogênese/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Dente/metabolismo , Germe de Dente/embriologia , Germe de Dente/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
8.
Histochem Cell Biol ; 137(4): 459-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22261924

RESUMO

Palate development requires coordinating proper cellular and molecular events in palatogenesis, including the epithelial-mesenchymal transition (EMT), apoptosis, cell proliferation, and cell migration. Zeb1 and Zeb2 regulate epithelial cadherin (E-cadherin) and EMT during organogenesis. While microRNA 200b (miR-200b) is known to be a negative regulator of Zeb1 and Zeb2 in cancer progression, its regulatory effects on Zeb1 and Zeb2 in palatogenesis have not yet been clarified. The aim of this study is to investigate the relationship between the regulators of palatal development, specifically, miR-200b and the Zeb family. Expression of both Zeb1 and Zeb2 was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium. After contact with the palatal shelves, miR-200b was expressed in the palatal epithelial lining and epithelial island around the fusion region but not in the palatal mesenchyme. The function of miR-200b was examined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of the Zeb family, upregulation of E-cadherin, and changes in cell migration and palatal fusion. These results suggest that miR-200b plays crucial roles in cell migration and palatal fusion by regulating Zeb1 and Zeb2 as a noncoding RNA during palate development.


Assuntos
Movimento Celular , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Palato/embriologia , Palato/metabolismo , Proteínas Repressoras/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
9.
Histochem Cell Biol ; 137(1): 67-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072420

RESUMO

Various cellular and molecular events are involved in palatogenesis, including apoptosis, epithelial-mesenchymal transition (EMT), cell proliferation, and cell migration. Smad2 and Snail, which are well-known key mediators of the transforming growth factor beta (Tgf-ß) pathway, play a crucial role in the regulation of palate development. Regulatory effects of microRNA 200b (miR-200b) on Smad2 and Snail in palatogenesis have not yet been elucidated. The aim of this study is to determine the relationship between palate development regulators miR-200b and Tgf-ß-mediated genes. Expression of miR-200b, E-cadherin, Smad2, and Snail was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium (MEE) and palatal mesenchyme. After the contact of palatal shelves, miR-200b was no longer expressed in the mesenchyme around the fusion region. The binding activity of miR-200b to both Smad2 and Snail was examined using a luciferase assay. MiR-200b directly targeted Smad2 and Snail at both cellular and molecular levels. The function of miR-200b was determined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of these Tgf-ß-mediated regulators and changes of apoptosis and cell proliferation in the palatal fusion region. These results suggest that miR-200b plays a crucial role in regulating the Smad2, Snail, and in apoptosis during palatogenesis by acting as a direct non-coding, influencing factor. Furthermore, the molecular interactions between miR-200b and Tgf-ß signaling are important for proper palatogenesis and especially for palate fusion. Elucidating the mechanism of palatogenesis may aid the design of effective gene-based therapies for the treatment of congenital cleft palate.


Assuntos
MicroRNAs/metabolismo , Palato/crescimento & desenvolvimento , Palato/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Palato/citologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética
10.
Stem Cells ; 29(2): 320-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21732489

RESUMO

Sur8/Shoc2 is a scaffold protein that regulates the Ras-extracellular signal-regulated kinase (ERK) pathway. However, the roles of Sur8 in cellular physiologies are poorly understood. In this study, Sur8 was severely repressed in the course of neural progenitor cell (NPC) differentiation in the cerebral cortex of developing rat embryos. Similarly, Sur8 was also critically reduced in cultured NPCs, which were induced differentiation by removal of basic fibroblast growth factor (bFGF). Sur8 regulation occurs at the protein level rather than at the mRNA level as revealed by both in situ hybridization and reverse transcriptase polymerase chain reaction analyses. The role of Sur8 in NPC differentiation was confirmed by lentivirus-mediated Sur8 knockdown, which resulted in increased differentiation, whereas exogenous expression of Sur8 inhibited differentiation. Contrastingly, NPC proliferation was promoted by overexpression, but was suppressed by Sur8 knockdown. The role of Sur8 as an antidifferentiation factor in the developing rat brain was confirmed by an ex vivo embryo culture system combined with the lentivirus-mediated Sur8 knockdown. The numbers and sizes of neurospheres were reduced, but neuronal outgrowth was enhanced by the Sur8 knockdown. The Ras-ERK pathway is involved in Sur8-mediated regulations of differentiation, as the treatment of ERK kinase (MEK) inhibitors blocks the effects of Sur8. The regulations of NPCs' differentiation and proliferation by the Ras-ERK pathway were also shown by the rescues of the effects of bFGF depletion, neuronal differentiation, and antiproliferation by epidermal growth factor. In summary, Sur8 is an antidifferentiation factor that stimulates proliferation for maintenance of self-renewal in NPCs via modulation of the Ras-ERK pathway.


Assuntos
Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco Neurais/metabolismo , Animais , Encéfalo/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Leupeptinas/farmacologia , Células-Tronco Neurais/citologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
11.
Differentiation ; 81(4): 261-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21367515

RESUMO

The runt-domain transcription factor Runx3 plays crucial roles during development such as regulating gene expression. It has been shown that Runx3 is involved in neurogenesis, thymopoiesis and functions like a tumor suppressor. Runx3 null mouse die soon after birth as a result of multiple organ defects. Runx3 null mouse lung shows an abnormal phenotype and loss of Runx3 induced remodeling in the lung. Interestingly, lung adenocarcinoma is observed in Runx3 heterozygous mice at 18 months of age. During lung development various cellular and molecular events occur such as cell proliferation, cell death, differentiation and epithelial-mesenchymal transition (EMT). To understand the specific lethal events in Runx3 null mice, we examined cellular and molecular networks involved in EMT, and EMT inducers were quantified by RT-qPCR during lung development. Excessive EMT was observed in lungs at PN1 day in Runx3 null mice and PN18 months in Runx3 heterozygous mice. Pharmacologic inhibition of EMT was used to curb tumor progression. In this study, U0126 was injected to pregnant mouse for inhibition of pERK signaling. After U0126 treatment, life spans of newborn mice were increased and lung hyperplasia was partially rescued by down-regulated cell proliferation and EMT. Our data suggest that Runx3 is involved in crucial regulation of alveolar differentiation and tumor suppression in developing mouse lung.


Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/crescimento & desenvolvimento , Alvéolos Pulmonares/crescimento & desenvolvimento , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Animais , Butadienos/farmacologia , Diferenciação Celular/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Pulmão/anormalidades , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Camundongos Knockout , Nitrilas/farmacologia , Gravidez , Alvéolos Pulmonares/metabolismo , Transdução de Sinais , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
12.
ACS Nano ; 16(1): 554-567, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014797

RESUMO

Injectable hydrogels show high potential for in vivo biomedical applications owing to their distinctive mode of administration into the human body. In this study, we propose a material design strategy for developing a multifunctional injectable hydrogel with good adhesiveness, stretchability, and bioresorbability. Its multifunctionality, whereupon multiple reactions occur simultaneously during its injection into the body without requiring energy stimuli and/or additives, was realized through meticulous engineering of bioresorbable precursors based on hydrogel chemistry. The multifunctional injectable hydrogel can be administered through a minimally invasive procedure, form a conformal adhesive interface with the target tissue, dynamically stretch along with the organ motions with minimal mechanical constraints, and be resorbed in vivo after a specific period. Further, the incorporation of functional nanomaterials into the hydrogel allows for various in vivo diagnostic and therapeutic applications, without compromising the original multifunctionality of the hydrogel. These features are verified through theranostic case studies on representative organs, including the skin, liver, heart, and bladder.


Assuntos
Adesivos , Hidrogéis , Humanos , Injeções
13.
J Exp Zool B Mol Dev Evol ; 316(8): 574-83, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21826789

RESUMO

The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Condrócitos/citologia , Condrogênese/fisiologia , Sialoproteína de Ligação à Integrina/metabolismo , Base do Crânio/embriologia , Tretinoína/metabolismo , Monoterpenos Acíclicos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteína Morfogenética Óssea 4/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Sialoproteína de Ligação à Integrina/efeitos dos fármacos , Antígeno Ki-67/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Camundongos , Monoterpenos/farmacologia , Técnicas de Cultura de Órgãos , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Base do Crânio/citologia , Base do Crânio/efeitos dos fármacos , Base do Crânio/metabolismo , Tretinoína/farmacologia , Receptor gama de Ácido Retinoico
14.
Nat Prod Res ; 35(11): 1852-1855, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31305145

RESUMO

Stauntonia hexaphylla (Lardizabalaceae) is an important medicinal plant in Korea, Japan, and China. Its leaves are used to treat many diseases because of their analgesic, sedative, and diuretic effects; however, there are few reports on their chemical constituents and biological activities. This study divided an ethanol extract into dichloromethane (DCM), ethyl acetate (EtOAc), and water fractions. Bioassay-guided fractionation of the ethanol extracts led to the isolation of seven compounds (1-7). To our knowledge, this is the first report of 1-7 from S. hexaphylla. The anti-inflammatory effects were investigated by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in Western blots. The ethanol extract (20 µg/mL), DCM fraction (20 µg/mL), and compound 1 (10 µM) decreased COX-2 and iNOS expression significantly in LPS-induced RAW264.7 cells. These results suggest that S. hexaphylla leaves and compound 1 are useful candidates for treating inflammatory and other diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Etanol/química , Extratos Vegetais/química , Folhas de Planta/química , Ranunculales/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
15.
Adv Mater ; 33(10): e2004902, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533125

RESUMO

The production of rechargeable batteries is rapidly expanding, and there are going to be new challenges in the near future about how the potential environmental impact caused by the disposal of the large volume of the used batteries can be minimized. Herein, a novel strategy is proposed to address these concerns by applying biodegradable device technology. An eco-friendly and biodegradable sodium-ion secondary battery (SIB) is developed through extensive material screening followed by the synthesis of biodegradable electrodes and their seamless assembly with an unconventional biodegradable separator, electrolyte, and package. Each battery component decomposes in nature into non-toxic compounds or elements via hydrolysis and/or fungal degradation, with all of the biodegradation products naturally abundant and eco-friendly. Detailed biodegradation mechanisms and toxicity influence of each component on living organisms are determined. In addition, this new SIB delivers performance comparable to that of conventional non-degradable SIBs. The strategy and findings suggest a novel eco-friendly biodegradable paradigm for large-scale rechargeable battery systems.

16.
Science ; 373(6558): 1022-1026, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446604

RESUMO

Skin electronics require stretchable conductors that satisfy metallike conductivity, high stretchability, ultrathin thickness, and facile patternability, but achieving these characteristics simultaneously is challenging. We present a float assembly method to fabricate a nanomembrane that meets all these requirements. The method enables a compact assembly of nanomaterials at the water-oil interface and their partial embedment in an ultrathin elastomer membrane, which can distribute the applied strain in the elastomer membrane and thus lead to a high elasticity even with the high loading of the nanomaterials. Furthermore, the structure allows cold welding and bilayer stacking, resulting in high conductivity. These properties are preserved even after high-resolution patterning by using photolithography. A multifunctional epidermal sensor array can be fabricated with the patterned nanomembranes.

17.
Dev Biol ; 325(1): 273-80, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19014928

RESUMO

In rodents, a circumvallate papilla (CVP) develops with dynamic changes in epithelial morphogenesis during early tongue development. Molecular and cellular studies of CVP development revealed that there would be two different mechanisms in the apex and the trench wall forming regions with specific expression patterns of Wnt11 and Shh. Molecular interactions were examined using in vitro organ culture with over-expression of Shh, important signalling molecules and various inhibitors revealed that there are two significant different mechanisms in CVP formation by Wnt11 and Shh expressions. Wnt, a well known key molecule to initiate taste papillae, would govern Rho activation and cytoskeleton formation in the apex epithelium of CVP. In contrast, Shh regulates the cell proliferation to differentiate taste buds and to invaginate the epithelium for development of von Ebner's gland (VEG). Based on these results, we suggest that these different molecular signalling cascades of Wnt11 and Shh would play crucial roles in specific morphogenesis and pattern formation of CVP during early mouse embryo development.


Assuntos
Epitélio/embriologia , Epitélio/enzimologia , Proteínas Hedgehog/metabolismo , Morfogênese , Língua/embriologia , Língua/enzimologia , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Piridinas/farmacologia , Língua/citologia , Quinases Associadas a rho/antagonistas & inibidores
18.
Talanta ; 219: 121269, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887159

RESUMO

Drug-induced cardiotoxicity is a major problem in drug discovery. Many approaches to efficient drug screening have been developed, including animal testing in vivo and cell testing in vitro. However, due to intrinsic difference between species, animal-based toxicity testing cannot comprehensively determine the potential side effects in subsequent human clinical trials. Furthermore, conventional in vitro assays are costly and labour-intensive, and require numerous tests. Therefore, it would be necessary to develop heart-on-a-chips made with advanced materials and soft bioelectronic fabrication techniques that offer fast, efficient, and accurate sensing of cardiac cells' behaviors in vitro. In this review, we introduce two key sensing methods in heart-on-a-chip for physical and electrical measurements. First, optical (e.g., direct and calcium imaging, and fluorescent, laser-based, and colorimetric sensing) and electrical (e.g., impedance, strain, and crack sensing) sensors that record the contractility of cardiomyocytes are reviewed. Subsequently, various sensors composed of rigid planar/three-dimensional electrodes, soft/flexible electronics, and nanomaterial-based transistors to monitor extracellular and intracellular electrophysiological potentials are discussed. A brief overview of future technology and comments on the current challenges conclude the review.


Assuntos
Dispositivos Lab-On-A-Chip , Miócitos Cardíacos , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Monitorização Fisiológica , Testes de Toxicidade
19.
Nat Commun ; 11(1): 5934, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230113

RESUMO

Conventional imaging and recognition systems require an extensive amount of data storage, pre-processing, and chip-to-chip communications as well as aberration-proof light focusing with multiple lenses for recognizing an object from massive optical inputs. This is because separate chips (i.e., flat image sensor array, memory device, and CPU) in conjunction with complicated optics should capture, store, and process massive image information independently. In contrast, human vision employs a highly efficient imaging and recognition process. Here, inspired by the human visual recognition system, we present a novel imaging device for efficient image acquisition and data pre-processing by conferring the neuromorphic data processing function on a curved image sensor array. The curved neuromorphic image sensor array is based on a heterostructure of MoS2 and poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane). The curved neuromorphic image sensor array features photon-triggered synaptic plasticity owing to its quasi-linear time-dependent photocurrent generation and prolonged photocurrent decay, originated from charge trapping in the MoS2-organic vertical stack. The curved neuromorphic image sensor array integrated with a plano-convex lens derives a pre-processed image from a set of noisy optical inputs without redundant data storage, processing, and communications as well as without complex optics. The proposed imaging device can substantially improve efficiency of the image acquisition and recognition process, a step forward to the next generation machine vision.

20.
ACS Nano ; 14(4): 4523-4535, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32191436

RESUMO

We herein developed an iontophoretic transdermal drug delivery system for the effective delivery of electrically mobile drug nanocarriers (DNs). Our system consists of a portable and disposable reverse electrodialysis (RED) battery that generates electric power for iontophoresis through the ionic exchange. In addition, in order to provide a drug reservoir to the RED-driven iontophoretic system, an electroconductive hydrogel composed of polypyrrole-incorporated poly(vinyl alcohol) (PYP) was used. The PYP hydrogel facilitated electron transfer from the RED battery and accelerated the mobility of electrically mobile DNs released from the PYP hydrogel. In this study, we showed that fluconazole- or rosiglitazone-loaded DNs could be functionalized with charge-inducing agents, and DNs with charge modification resulted in facilitated transdermal transport via repulsive RED-driven iontophoresis. In addition, topical application and RED-driven iontophoresis of rosiglitazone-loaded DNs resulted in an effective antiobese condition displaying decreased bodyweight, reduced glucose level, and increased conversion of white adipose tissues to brown adipose tissues in vivo. Consequently, we highlight that this transdermal drug delivery platform would be extensively utilized for delivering diverse therapeutic agents in a noninvasive way.


Assuntos
Iontoforese , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis/metabolismo , Polímeros/metabolismo , Pirróis , Pele/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA