RESUMO
Light-emitting diodes (LEDs) based on perovskite quantum dots have shown external quantum efficiencies (EQEs) of over 23% and narrowband emission, but suffer from limited operating stability1. Reduced-dimensional perovskites (RDPs) consisting of quantum wells (QWs) separated by organic intercalating cations show high exciton binding energies and have the potential to increase the stability and the photoluminescence quantum yield2,3. However, until now, RDP-based LEDs have exhibited lower EQEs and inferior colour purities4-6. We posit that the presence of variably confined QWs may contribute to non-radiative recombination losses and broadened emission. Here we report bright RDPs with a more monodispersed QW thickness distribution, achieved through the use of a bifunctional molecular additive that simultaneously controls the RDP polydispersity while passivating the perovskite QW surfaces. We synthesize a fluorinated triphenylphosphine oxide additive that hydrogen bonds with the organic cations, controlling their diffusion during RDP film deposition and suppressing the formation of low-thickness QWs. The phosphine oxide moiety passivates the perovskite grain boundaries via coordination bonding with unsaturated sites, which suppresses defect formation. This results in compact, smooth and uniform RDP thin films with narrowband emission and high photoluminescence quantum yield. This enables LEDs with an EQE of 25.6% with an average of 22.1 ±1.2% over 40 devices, and an operating half-life of two hours at an initial luminance of 7,200 candela per metre squared, indicating tenfold-enhanced operating stability relative to the best-known perovskite LEDs with an EQE exceeding 20%1,4-6.
RESUMO
The exploration of thermoelectric materials is challenging considering the large materials space, combined with added exponential degrees of freedom coming from doping and the diversity of synthetic pathways. Here, historical data is incorporated, and is updated using experimental feedback by employing error-correction learning (ECL). This is achieved by learning from prior datasets and then adapting the model to differences in synthesis and characterization that are otherwise difficult to parameterize. This strategy is thus applied to discovering thermoelectric materials, where synthesis is prioritized at temperatures <300 °C. A previously unexplored chemical family of thermoelectric materials, PbSe:SnSb, is documented, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2× that of PbSe. The investigations herein reveal that a closed-loop experimentation strategy reduces the required number of experiments to find an optimized material by a factor as high as 3× compared to high-throughput searches powered by state-of-the-art machine-learning (ML) models. It is also observed that this improvement is dependent on the accuracy of the ML model in a manner that exhibits diminishing returns: once a certain accuracy is reached, factors that are instead associated with experimental pathways begin to dominate trends.
RESUMO
Engineering halide perovskites through alloying allows synthesis of materials having tuned electronic and optical properties; however, synthesizing many of these alloys is hindered by the formation of demixed phases arising due to thermodynamically unstable crystal structures. Methods have been developed to make such alloys, such as solid-phase reactions, chemical vapor deposition, and mechanical grinding; but these are incompatible with low-temperature solution-processing and monolithic integration, precluding a number of important applications of these materials. Here, solvent-phase kinetic trapping (SPKT), an approach that enables the synthesis of novel thermodynamically unfavored perovskite alloys, is developed. SPKT is used to synthesize Cs1- x Rbx PbCl3 and report the first instance of ultraviolet emission in polycrystalline perovskite thin films. SPKT leads to materials exhibiting superior thermal and photostability compared to non-kinetically trapped materials of the same precursors. Transient absorption spectroscopy of the kinetically trapped material reveals improved optical properties: greater absorption, and longer ground-state bleach lifetimes. SPKT may be applied to other perovskites to realize improved material properties while benefiting from facile solution-processing.
RESUMO
Metal halide perovskites have emerged as promising candidates for solution-processed laser gain materials, with impressive performance in the green and red spectral regions. Despite exciting progress, deep-blue-an important wavelength for laser applications-remains underexplored; indeed, cavity integration and single-mode lasing from large-bandgap perovskites have yet to be achieved. Here, a vapor-assisted chlorination strategy that enables synthesis of low-dimensional CsPbCl3 thin films exhibiting deep-blue emission is reported. Using this approach, high-quality perovskite thin films having a low surface roughness (RMS ≈ 1.3 nm) and efficient charge transfer properties are achieved. These enable us to document low-threshold amplified spontaneous emission. Levering the high quality of the gain medium, vertical-cavity surface-emitting lasers with a low lasing threshold of 6.5 µJ cm-2 are fabricated. This report of deep-blue perovskite single-mode lasing showcases the prospect of increasing the range of deep-blue laser sources.
RESUMO
Charge carrier transport in colloidal quantum dot (CQD) solids is strongly influenced by coupling among CQDs. The shape of as-synthesized CQDs results in random orientational relationships among facets in CQD solids, and this limits the CQD coupling strength and the resultant performance of optoelectronic devices. Here, colloidal-phase reconstruction of CQD surfaces, which improves facet alignment in CQD solids, is reported. This strategy enables control over CQD faceting and allows demonstration of enhanced coupling in CQD solids. The approach utilizes post-synthetic resurfacing and unites surface passivation and colloidal stability with a propensity for dots to couple via (100):(100) facets, enabling increased hole mobility. Experimentally, the CQD solids exhibit a 10× increase in measured hole mobility compared to control CQD solids, and enable photodiodes (PDs) exhibiting 70% external quantum efficiency (vs 45% for control devices) and specific detectivity, D* > 1012 Jones, each at 1550 nm. The photodetectors feature a 7 ns response time for a 0.01 mm2 area-the fastest reported for solution-processed short-wavelength infrared PDs.
RESUMO
Perovskite-based light-emitting diodes (PeLEDs) are now approaching the upper limits of external quantum efficiency (EQE); however, their application is currently limited by reliance on lead and by inadequate color purity. The Rec. 2020 requires Commission Internationale de l'Eclairage coordinates of (0.708, 0.292) for red emitters, but present-day perovskite devices only achieve (0.71, 0.28). Here, lead-free PeLEDs are reported with color coordinates of (0.706, 0.294)-the highest purity reported among red PeLEDs. The variation of the emission spectrum is also evaluated as a function of temperature and applied potential, finding that emission redshifts by <3 nm under low temperature and by <0.3 nm V-1 with operating voltage. The prominent oxidation pathway of Sn is identified and this is suppressed with the aid of H3PO2. This strategy prevents the oxidation of the constituent precursors, through both its moderate reducing properties and through its forming complexes with the perovskite that increase the energetic barrier toward Sn oxidation. The H3PO2 additionally seeds crystal growth during film formation, improving film quality. PeLEDs are reported with an EQE of 0.3% and a brightness of 70 cd m-2; this is the record among reported red-emitting, lead-free PeLEDs.