Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1567, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378825

RESUMO

Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet's free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.

2.
Biomater Sci ; 11(14): 4827-4844, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37326611

RESUMO

The controlled release of antigens from injectable depots has been actively pursued to achieve long-lasting immune responses in vaccine development. Nonetheless, subcutaneous depots are often susceptible to foreign body responses (FBRs) dominated by macrophage clearance and fibrotic encapsulation, resulting in limited antigen delivery to target dendritic cells (DCs) that bridge innate and adaptive immunity. Here, we aim to develop a long-term antigen depot that can bypass FBR and engage DCs to mature and migrate to lymph nodes to activate antigen-specific T-cells. Leveraging the immunomodulatory properties of exogenous polysaccharides and the anti-fouling characteristics of zwitterionic phosphorylcholine (PC) polymers, we developed a PC functionalized dextran (PCDX) hydrogel for long-term antigen delivery. We observed that PCDX in both injectable scaffold and microparticle (MP) forms could effectively evade FBR as the anionic carboxymethyl DX (CMDX) in vitro and in vivo. Meanwhile, PCDX provided slower and longer release of antigens than CMDX, resulting in local enrichment of CD11c+ DCs at the MP injection sites. DC cultured on PCDX exhibited stronger immunogenic activation with higher CD86, CD40, and MHC-I/peptide complex than CMDX. PCDX also generated DC with greater propensity in migration to lymph nodes, as well as antigen presentations to trigger both CD4+ and CD8+ arms of T-cell responses, as compared to other charge derivatives of DX. Besides cellular responses, PCDX could also induce more durable and potent humoral responses, with higher levels of antigen specific IgG1 and IgG2a by day 28, as compared to other treatment groups. In conclusion, PCDX can incorporate the benefits of both immunogenic DX and anti-fouling properties of zwitterionic PC and thus, shows great promise in providing long-term delivery of antigens for vaccine development.


Assuntos
Células Dendríticas , Vacinas , Hidrogéis/química , Linfócitos T , Polissacarídeos
3.
ACS Appl Bio Mater ; 4(8): 6186-6194, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006890

RESUMO

Hydrogel microparticles (HMPs) have been widely applied in biological, pharmacologic, and biomedical industries due to their versatility. Particle size is a paramount factor for controlling drug release profiles from HMPs. Conventional fabrication methods such as bulk emulsion, coacervation, and spray drying do not offer a precise size control and high reproducibility, which may compromise the utility of HMPs for controlled release. Here, we report a droplet-based microfluidic synthesis method for the precise fabrication of HMPs. Functionalized polysaccharides/protein fluid mixtures were emulsified into monodisperse droplets in light mineral oil using a flow-focusing device and well mixed in precursor droplets through a serpentine mixing channel before the solidification of HMPs. The homogenized precursor polymers cross-link in the droplets by catalyst-free Michael addition. As a demonstration of the controlled release of a model drug from the HMPs, fluorescein-labeled immunoglobulin G (F-IgG) and bevacizumab were encapsulated in the HMPs of different diameters for measuring its release dynamics over time. The release kinetics of F-IgG from the HMPs was shown to be controllable by altering the particle size while keeping other parameters unchanged. Around 70% of bevacizumab released from DX HMPs was functional. Both HA and DX HMPs showed no cytotoxicity in the HEK293 cell line. We anticipate that this approach could be used as a general method to fabricate HMPs made of hydrophilic polymers for the controlled release of biotherapeutics.


Assuntos
Hidrogéis , Microfluídica , Bevacizumab , Química Click , Preparações de Ação Retardada/farmacologia , Células HEK293 , Humanos , Imunoglobulina G , Microfluídica/métodos , Polímeros , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA