Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(4): 647-649, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425487

RESUMO

In this issue of Cell, Liu et al. (2018) report the birth of two healthy cloned macaque monkeys using fetal fibroblasts. By artificially enhancing the arsenal of epigenetic modifiers in the oocyte, the authors overcome the earliest roadblocks that take place during somatic cell nuclear transfer (SCNT).


Assuntos
Haplorrinos , Macaca , Animais , Clonagem de Organismos , Fibroblastos , Técnicas de Transferência Nuclear , Oócitos , Primatas
2.
Mol Hum Reprod ; 29(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37713463

RESUMO

Excessive FSH doses during ovarian stimulation in the small ovarian reserve heifer (SORH) cause premature cumulus expansion and follicular hyperstimulation dysgenesis (FHD) in nearly all ovulatory-size follicles with predicted disruptions in cell-signaling pathways in cumulus cells and oocytes (before ovulatory hCG stimulation). These observations support the hypothesis that excessive FSH dysregulates cumulus cell function and oocyte maturation. To test this hypothesis, we determined whether excessive FSH-induced differentially expressed genes (DEGs) in cumulus cells identified in our previously published transcriptome analysis were altered independent of extreme phenotypic differences observed amongst ovulatory-size follicles, and assessed predicted roles of these DEGs in cumulus and oocyte biology. We also determined if excessive FSH alters cumulus cell morphology, and oocyte nuclear maturation before (premature) or after an ovulatory hCG stimulus or during IVM. Excessive FSH doses increased expression of 17 cumulus DEGs with known roles in cumulus cell and oocyte functions (responsiveness to gonadotrophins, survival, expansion, and oocyte maturation). Excessive FSH also induced premature cumulus expansion and oocyte maturation but inhibited cumulus expansion and oocyte maturation post-hCG and diminished the ability of oocytes with prematurely expanded cumulus cells to undergo IVF or nuclear maturation during IVM. Ovarian stimulation with excessive FSH is concluded to disrupt cumulus cell and oocyte functions by inducing premature cumulus expansion and dysregulating oocyte maturation without an ovulatory hCG stimulus yielding poor-quality cumulus-oocyte complexes that may be incorrectly judged morphologically as suitable for IVF during ART.


Assuntos
Células do Cúmulo , Reserva Ovariana , Feminino , Bovinos , Animais , Células do Cúmulo/metabolismo , Meiose , Oócitos/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Indução da Ovulação
3.
BMC Genomics ; 21(1): 471, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640983

RESUMO

BACKGROUND: Zebrafish is a popular model organism, which is widely used in developmental biology research. Despite its general use, the direct comparison of the zebrafish and human oocyte transcriptomes has not been well studied. It is significant to see if the similarity observed between the two organisms at the gene sequence level is also observed at the expression level in key cell types such as the oocyte. RESULTS: We performed single-cell RNA-seq of the zebrafish oocyte and compared it with two studies that have performed single-cell RNA-seq of the human oocyte. We carried out a comparative analysis of genes expressed in the oocyte and genes highly expressed in the oocyte across the three studies. Overall, we found high consistency between the human studies and high concordance in expression for the orthologous genes in the two organisms. According to the Ensembl database, about 60% of the human protein coding genes are orthologous to the zebrafish genes. Our results showed that a higher percentage of the genes that are highly expressed in both organisms show orthology compared to the lower expressed genes. Systems biology analysis of the genes highly expressed in the three studies showed significant overlap of the enriched pathways and GO terms. Moreover, orthologous genes that are commonly overexpressed in both organisms were involved in biological mechanisms that are functionally essential to the oocyte. CONCLUSIONS: Orthologous genes are concurrently highly expressed in the oocytes of the two organisms and these genes belong to similar functional categories. Our results provide evidence that zebrafish could serve as a valid model organism to study the oocyte with direct implications in human.


Assuntos
Oócitos/metabolismo , Transcriptoma , Peixe-Zebra/genética , Animais , Humanos , RNA-Seq , Análise de Célula Única , Peixe-Zebra/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(7): 2400-5, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308433

RESUMO

Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts.


Assuntos
Blastocisto , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/fisiologia , Lisina/metabolismo , Animais , Bovinos , Histonas/química , Metilação
5.
Biol Reprod ; 90(2): 30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24389873

RESUMO

To date, efforts to establish pluripotent embryonic stem cells from bovine embryos have failed. The lack of reliable pluripotency markers is an important drawback when attempting to derive these cells. This study aimed to identify genes upregulated in the inner cell mass (ICM) of bovine blastocysts, and we selected SOX2 for further characterization. Spatial and temporal localization of the SOX2 protein revealed that its expression starts at the 16-cell stage and then becomes restricted to the ICMs of blastocysts. To study the role of SOX2 during the early development of bovine embryos, we designed siRNA to target SOX2. We began by injecting this siRNA into zygotes; the rate at which blastocysts developed declined compared to noninjected or scramble-injected controls. When only one blastomere of a two-cell embryo was injected with SOX2 siRNA, we observed development rates similar to those of controls. Daughter cells of the injected blastomere were tracked by TRITC fluorescence and found to contribute to the ICM, as select cells also lacked SOX2. Gene expression analysis revealed a decrease in SOX2 and NANOG gene expression in siRNA-injected embryos, but OCT4 expression remained unchanged. We conclude that SOX2 localizes exclusively in the ICM of bovine blastocysts, and its downregulation negatively impacts preimplantation development; however, it is still unclear as to why downregulation of SOX2 in one cell of a two-cell embryo does not affect the composition of the ICM.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , Fatores de Transcrição SOXB1/genética , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Massa Celular Interna do Blastocisto/efeitos dos fármacos , Massa Celular Interna do Blastocisto/metabolismo , Bovinos/genética , Células Cultivadas , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Ectoderma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , Organismos Geneticamente Modificados , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo
6.
Mol Reprod Dev ; 81(10): 962-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25251051

RESUMO

Placental defects are common in bovine embryos produced using assisted reproductive techniques. A proper understanding of the events leading to inner cell mass (ICM) and trophectoderm (TE) specification could help identify the origins of such developmental failures. We focused on caudal-type homeobox transcription factor 2 (CDX2) since it has a specific role during TE differentiation in mouse embryos. Of all the preimplantation stages analyzed, CDX2 protein was present only at the blastocyst stage. To further understand the roles of CDX2 during bovine development, we depleted CDX2 mRNA; despite a significant loss of detectable protein, embryos were able to form blastocysts at the same rate as controls. Embryos lacking CDX2 did not show abnormalities in the number of TE, ICM, or total cells in the blastocyst. Expression of the developmentally important genes SOX2, POU5F1, and NANOG, or TE markers such as IFN-T and KRT18 were not affected by the reduction in CDX2 levels, nor was the localization of SOX2 and POU5F1 protein. Using a functional barrier assay, we observed that the TE epithelial layer of embryos lacking CDX2 had lost its integrity. Our results thus indicate that CDX2 is not required for TE formation during bovine development; nevertheless, it is necessary for maintaining TE integrity.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/biossíntese , Animais , Blastocisto/citologia , Bovinos , Camundongos
7.
iScience ; 27(6): 109944, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784018

RESUMO

Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.

8.
Methods Mol Biol ; 2647: 59-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041329

RESUMO

Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.


Assuntos
Diferenciação Celular , Técnicas de Transferência Nuclear , Placenta , Animais , Feminino , Gravidez , Blastocisto/metabolismo , Clonagem de Organismos , Embrião de Mamíferos/metabolismo , Mamíferos
9.
Stem Cells Dev ; 32(17-18): 515-523, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345692

RESUMO

Cloning cattle using somatic cell nuclear transfer (SCNT) is inefficient. Although the rate of development of SCNT embryos in vitro is similar to that of fertilized embryos, most fail to develop into healthy calves. In this study, we aimed to identify developmentally competent embryos according to blastocyst cell composition and perform transcriptome analysis of single embryos. Transgenic SCNT embryos expressing nuclear-localized HcRed gene at day 7 of development were imaged by confocal microscopy for cell counting and individually transferred to recipient heifers. Pregnancy rates were determined by ultrasonography. Embryos capable of establishing pregnancy by day 35 had an average of 117 ± 6 total cells, whereas embryos with an average of 128 ± 5 cells did not establish pregnancy (P < 0.05). A lesser average number of 41 ± 3 cells in the inner cell mass (ICM) also resulted in pregnancies (<0.05) than a greater number of 48 ± 2 cells in the ICM. Single embryos were then subjected to RNA sequencing for transcriptome analysis. Using weighted gene coexpression network analysis, we identified clusters of genes in which gene expression correlated with the number of total cells or ICM cells. Gene ontology analysis of these clusters revealed enriched biological processes in coenzyme metabolic process, intracellular signaling cascade, and glucose catabolic process, among others. We concluded that SCNT embryos with fewer total and ICM cell numbers resulted in greater pregnancy establishment rates and that these differences are reflected in the transcriptome of such embryos.


Assuntos
Desenvolvimento Embrionário , Transcriptoma , Gravidez , Animais , Bovinos , Feminino , Transcriptoma/genética , Desenvolvimento Embrionário/genética , Blastocisto , Técnicas de Transferência Nuclear/veterinária , Clonagem de Organismos/métodos , Contagem de Células
10.
Nat Commun ; 14(1): 5113, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607933

RESUMO

The cytoplasmic droplet is a conserved dilated area of cytoplasm situated at the neck of the sperm flagellum. Viewed as residual cytoplasm inherited from late spermatids, the cytoplasmic droplet contains numerous saccular elements as its key content. However, the origin of these saccules and the function of the cytoplasmic droplet have long been speculative. Here, we identify the molecular origin of these cytoplasmic droplet components by uncovering a vesicle pathway essential for formation and sequestration of saccules within the cytoplasmic droplet. This process is governed by a transmembrane protein SYPL1 and its interaction with VAMP3. Genetic ablation of SYPL1 in mice reveals that SYPL1 dictates the formation and accumulation of saccular elements in the forming cytoplasmic droplet. Derived from the Golgi, SYPL1 vesicles are critical for segregation of key metabolic enzymes within the forming cytoplasmic droplet of late spermatids and epididymal sperm, which are required for sperm development and male fertility. Our results uncover a mechanism to actively form and segregate saccules within the cytoplasmic droplet to promote sperm fertility.


Assuntos
Sêmen , Espermatozoides , Animais , Masculino , Camundongos , Vesícula , Citoplasma , Citosol , Fertilidade
11.
Nat Methods ; 6(10): 733-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19718031

RESUMO

We developed a method for somatic cell nuclear transfer in zebrafish using laser-ablated metaphase II eggs as recipients, the micropyle for transfer of the nucleus and an egg activation protocol after nuclear reconstruction. We produced clones from cells of both embryonic and adult origins, although the latter did not give rise to live adult clones.


Assuntos
Engenharia Genética/métodos , Células Híbridas/transplante , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Animais , Técnicas de Transferência Nuclear
12.
Biol Reprod ; 86(3): 76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190703

RESUMO

Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.


Assuntos
Apoptose/efeitos da radiação , Oócitos/efeitos da radiação , Rad51 Recombinase/fisiologia , Radiação Ionizante , Animais , Anexina A5/metabolismo , Caspase 3/metabolismo , Bovinos , Células Cultivadas , Citocromos c/metabolismo , Dano ao DNA/efeitos da radiação , Feminino , Camundongos , Modelos Animais , Oócitos/citologia , Oócitos/metabolismo
13.
Adv Exp Med Biol ; 741: 276-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457116

RESUMO

Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.


Assuntos
Reprogramação Celular , Clonagem de Organismos , Células-Tronco Embrionárias/fisiologia , Adulto , Células-Tronco Embrionárias/citologia , Humanos , Técnicas de Transferência Nuclear , Fenótipo , Medicina Regenerativa/métodos , Transplante de Células-Tronco
14.
J Clin Invest ; 118(11): 3671-81, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18924610

RESUMO

Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca(2+)](i) oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca(2+)](i) oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca(2+)](i) oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.


Assuntos
Cálcio/metabolismo , Desenvolvimento Embrionário/genética , Fosfoinositídeo Fosfolipase C/genética , Espermatozoides/fisiologia , Humanos , Masculino , Fosfoinositídeo Fosfolipase C/metabolismo , Espermatozoides/metabolismo
16.
Front Cell Neurosci ; 15: 725195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046774

RESUMO

Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.

17.
iScience ; 24(8): 102827, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34381965

RESUMO

To repair neural circuitry following spinal cord injury (SCI), neural stem cell (NSC) transplantation has held a primary focus; however, stochastic outcomes generate challenges driven in part by NSC differentiation and tumor formation. The recent ability to generate regionally specific neurons and their support cells now allows consideration of directed therapeutic approaches with pre-differentiated and networked spinal neural cells. Here, we form encapsulated, transplantable neuronal networks of regionally matched cervical spinal motor neurons, interneurons, and oligodendrocyte progenitor cells derived through trunk-biased neuromesodermal progenitors. We direct neurite formation in alginate-based neural ribbons to generate electrically active, synaptically connected networks, characterized by electrophysiology and calcium imaging before transplantation into rodent models of contused SCI for evaluation at 10-day and 6-week timepoints. The in vivo analyses demonstrate viability and retention of interconnected synaptic networks that readily integrate with the host parenchyma to advance goals of transplantable neural circuitry for SCI treatment.

18.
Nat Biotechnol ; 25(1): 77-83, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17211406

RESUMO

Research on, and commercialization of, cloned cattle has been conducted for more than 20 years. Early techniques relied on the physical splitting of embryos or using embryo cells for nuclear transfer to generate cloned animals. Milk and meat from these animals entered into the human food market with no evidence of problems. With the advent of nuclear transfer, which enables the direct transference and preservation of high-value meat- and milk-producing genotypes to offspring, concerns have been raised about whether the products from somatic cell nuclear transfer-produced animals are safe for human consumption. Studies on the biochemical properties of food products from cloned and noncloned animals have thus far not detected any differences. All data to date indicate no significant differences in the measured parameters between animals created by nuclear transfer and normally bred animals. Public acceptance of cloned animal products depends upon forthcoming US Food and Drug Administration approval along with convincing safety data.


Assuntos
Animais Geneticamente Modificados , Clonagem de Organismos , Alimentos Geneticamente Modificados , Carne/análise , Leite/química , Medição de Risco/métodos , Fatores de Risco , Animais , Qualidade de Produtos para o Consumidor , Análise de Alimentos/métodos
19.
Sci Rep ; 10(1): 3851, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123258

RESUMO

The zebrafish species Danio rerio has become one of the major vertebrate model organisms used in biomedical research. However, there are aspects of the model that need to be improved. One of these is the ability to identify individual fish and fish lines by DNA profiling. Although many dinucleotide short tandem repeat (diSTR) markers are available for this and similar purposes, they have certain disadvantages such as an excessive polymerase slippage ("stutter") that causes difficulties in automated genotyping and cross-laboratory comparisons. Here we report on the development of a 13-plex of tetranucleotide and pentanucleotide STRs (tetraSTRs and pentaSTRs, respectively) that have low stutter. The system uses an inexpensive universal primer labelling system, which can easily be converted to a direct labeling system if desired. This 13-plex was examined in three zebrafish lines (NHGRI-1, kca33Tg, and kca66Tg, originally obtained from ZIRC). The average observed heterozygosity (Ho) and expected heterozygosity (He) in these highly inbred lines were 0.291 and 0.359, respectively, which is very similar to what has been found with diSTRs. The probability of identity (PI) for all fish tested was 2.1 × 10-5 and the PI for siblings (PIsib) was 6.4 × 10-3, as calculated by the Genalex package. Ninety percent of the fish tested were correctly identified with their respective strains. It is also demonstrated that this panel can be used to confirm doubled-haploid cell lines. This multiplex should find multiple uses for improving the accuracy and reproducibility of studies using the zebrafish model.


Assuntos
Impressões Digitais de DNA , Técnicas de Genotipagem , Repetições de Microssatélites , Peixe-Zebra/genética , Animais
20.
Sci Rep ; 10(1): 12939, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737387

RESUMO

Cell therapy for the injured spinal cord will rely on combined advances in human stem cell technologies and delivery strategies. Here we encapsulate homotypic spinal cord neural stem cells (scNSCs) in an alginate-based neural ribbon delivery platform. We perform a comprehensive in vitro analysis and qualitatively demonstrate graft survival and injury site retention using a rat C4 hemi-contusion model. Pre-configured neural ribbons are transport-stable modules that enable site-ready injection, and can support scNSC survival and retention in vivo. Neural ribbons offer multifunctionality in vitro including co-encapsulation of the injury site extracellular matrix modifier chondroitinase ABC (chABC), tested here in glial scar models, and ability of cervically-patterned scNSCs to differentiate within neural ribbons and project axons for integration with 3-D external matrices. This is the first extensive in vitro characterization of neural ribbon technology, and constitutes a plausible method for reproducible delivery, placement, and retention of viable neural cells in vivo.


Assuntos
Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Medula Espinal , Transplante de Células-Tronco , Animais , Condroitina ABC Liase/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Ratos Long-Evans , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA