Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 248: 109213, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566913

RESUMO

Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor. Lipidomics of nephritic kidneys confirmed ferroptosis. Using nephrotoxic serum, we induced immune complex glomerulonephritis in congenic mice and demonstrate that impaired iron sequestration within the proximal tubules exacerbates ferroptosis. Lupus nephritis patient serum rendered human proximal tubular cells susceptibility to ferroptosis which was inhibited by Liproxstatin-2, a novel ferroptosis inhibitor. Collectively, our findings identify intra-renal ferroptosis as a pathological feature and contributor to tubular injury in human and murine lupus nephritis.


Assuntos
Ferroptose , Nefropatias , Nefrite Lúpica , Humanos , Camundongos , Animais , Ferro/metabolismo , Glomérulos Renais/metabolismo , Células Epiteliais/metabolismo
2.
Pediatr Nephrol ; 38(8): 2669-2678, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36688943

RESUMO

BACKGROUND: Silent lupus nephritis (SLN) is systemic lupus erythematosus (SLE) without clinical and laboratory features of kidney involvement but with biopsy-proven nephritis. This study aims to describe and compare the baseline characteristics and outcomes of pediatric SLN with overt LN (OLN) and to identify associated risk factors and biochemical markers. METHODS: In this retrospective, observational study, multivariate logistic regression and receiver operating characteristic (ROC) analyses studied age, sex, race, serum complements, anti-double-stranded-DNA antibody, anti-Smith antibody, eGFR, and proliferative nephritis. RESULTS: In our cohort of 69 patients, 47 were OLN, and 22 were SLN. OLN (OR = 4.9, p = 0.03) and non-African Americans (AA) (OR = 13.0, p < 0.01) had higher odds, and increasing C3 and C4 were associated with lower odds of proliferative nephritis (OR 0.95 and 0.65 per one unit increase in C3 and C4, respectively, p < 0.01). They demonstrated a good discriminative ability to detect proliferative nephritis as assessed by the area under the ROC curve (C3 = 0.78, C4 = 0.78). C3 and C4 in proliferative SLN and OLN were comparable and significantly lower than their non-proliferative counterparts. No association was observed between age, sex, anti-double-stranded-DNA antibody, anti-Smith antibody, eGFR, and proliferative nephritis. Proliferative SLN and OLN patients received similar treatments. Adverse events were identified in the proliferative OLN only. CONCLUSIONS: Lower complement levels are associated with proliferative lesions in pediatric LN-both SLN and OLN. The non-AA population had higher odds of having proliferative nephritis than the AA. Prospective, randomized, long-term follow-up of proliferative SLN patients is needed to ascertain the beneficial effect of early diagnosis and treatment. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Criança , Estudos Retrospectivos , Estudos Prospectivos , Lúpus Eritematoso Sistêmico/complicações , Proteínas do Sistema Complemento , Biomarcadores , Rim/patologia , Biópsia/efeitos adversos , DNA
3.
Nephrol Dial Transplant ; 37(12): 2351-2362, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-35772019

RESUMO

Kidney dysplasia is one of the most frequent causes of chronic kidney failure in children. While dysplasia is a histological diagnosis, the term 'kidney dysplasia' is frequently used in daily clinical life without histopathological confirmation. Clinical parameters of kidney dysplasia have not been clearly defined, leading to imprecise communication amongst healthcare professionals and patients. This lack of consensus hampers precise disease understanding and the development of specific therapies. Based on a structured literature search, we here suggest a common basis for clinical, imaging, genetic, pathological and basic science aspects of non-obstructive kidney dysplasia associated with functional kidney impairment. We propose to accept hallmark sonographic findings as surrogate parameters defining a clinical diagnosis of dysplastic kidneys. We suggest differentiated clinical follow-up plans for children with kidney dysplasia and summarize established monogenic causes for non-obstructive kidney dysplasia. Finally, we point out and discuss research gaps in the field.


Assuntos
Nefropatias , Insuficiência Renal , Anormalidades Urogenitais , Criança , Humanos , Rim/patologia , Nefropatias/patologia , Insuficiência Renal/patologia
4.
Fetal Pediatr Pathol ; 39(3): 259-262, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31411514

RESUMO

Background: Mitochondriopathies are a heterogeneous group of genetic disorders with a wide array of symptomatology, organ system involvement, and inheritance patterns. Neonatal presentation can be fatal with neuromuscular dysfunction, lactic acidosis and hepatic failure. Historic literature has numerous phenotypic illustrations; however, genotypic correlation is limited. With improved testing methods, genotype-phenotype correlation is now increasingly feasible as demonstrated herein. Case Report: We present liver pathology findings in an infant who expired with a diagnostic suspicion of a mitochondrial disorder. Postmortem hepatocyte hypereosinophilia with microvesicular steatosis associated with ultrastructural findings of mitochondrial hyperplasia supported a mitochondriopathy. Genetic testing eventually confirmed mitochondrial complex I deficiency from bi-allelic mutations in NDUFS2. Conclusions: Morphologic attributes can assist in diagnosis of mitochondriopathies before specific genetic testing results are available. This case also highlights that diagnostic information can be gained from ultrastructural examination of postmortem liver tissue.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Fígado/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , NADH Desidrogenase/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Lactente , Masculino , Mutação
5.
Am J Physiol Renal Physiol ; 316(5): F1026-F1040, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810063

RESUMO

Conditional gene targeting using Cre recombinase has offered a powerful tool to modify gene function precisely in defined cells/tissues and at specific times. However, in mammalian cells, Cre recombinase can be genotoxic. The importance of including Cre-expressing control mice to avoid misinterpretation and to maximize the validity of the experimental results has been increasingly recognized. While studying the role of podocytes in the pathogenesis of glomerular basement membrane (GBM) thickening, we used Cre recombinase driven by the podocyte-specific podocin promoter (NPHS2-Cre) to generate a conditional knockout. By conventional structural and functional measures (histology by periodic acid-Schiff staining, albuminuria, and plasma creatinine), we did not detect significant differences between NPHS2-Cre transgenic and wild-type control mice. However, surprisingly, the group that expressed Cre transgene alone developed signs of podocyte toxicity, including marked GBM thickening, loss of normal foot process morphology, and reduced Wilms tumor 1 expression. GBM thickening was characterized by altered expression of core structural protein laminin isoform α5ß2γ1. RNA sequencing analysis of extracted glomeruli identified 230 genes that were significant and differentially expressed (applying a q < 0.05-fold change ≥ ±2 cutoff) in NPHS2-Cre mice compared with wild-type control mice. Many biological processes were reflected in the RNA sequencing data, including regulation of the extracellular matrix and pathways related to apoptosis and cell death. This study highlights the importance of including the appropriate controls for potential Cre-mediated toxicity in conditional gene-targeting experiments. Indeed, omitting the Cre transgene control can result in critical errors during interpretation of experimental data.


Assuntos
Marcação de Genes/efeitos adversos , Membrana Basal Glomerular/enzimologia , Integrases/metabolismo , Podócitos/enzimologia , Animais , Regulação da Expressão Gênica , Membrana Basal Glomerular/ultraestrutura , Integrases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Laminina/genética , Laminina/metabolismo , Proteínas de Membrana/genética , Camundongos Transgênicos , Podócitos/ultraestrutura , Regiões Promotoras Genéticas , Fatores de Tempo , Proteínas WT1/genética , Proteínas WT1/metabolismo
6.
Am J Physiol Renal Physiol ; 312(3): F427-F435, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927654

RESUMO

Regulated dicarboxylate transport is critical for acid-base homeostasis, prevention of calcium nephrolithiasis, regulation of collecting duct sodium chloride transport, and the regulation of blood pressure. Although luminal dicarboxylate reabsorption via NaDC1 (SLC13A2) is believed to be the primary mechanism regulating renal dicarboxylate transport, the specific localization of NaDC1 in the human kidney is currently unknown. This study's purpose was to determine NaDC1's expression in normal and neoplastic human kidneys. Immunoblot analysis demonstrated NaDC1 expression with an apparent molecular weight of ~61 kDa. Immunohistochemistry showed apical NaDC1 immunolabel in the proximal tubule of normal human kidney tissue; well-preserved proximal tubule brush border was clearly labeled. Apical NaDC1 expression was evident throughout the entire proximal tubule, including the initial proximal convoluted tubule, as identified by origination from the glomerular tuft, and extending through the terminal of the proximal tubule, the proximal straight tubule in the outer medulla. We confirmed proximal tubule localization by colocalization with the proximal tubule specific protein, NBCe1. NaDC1 immunolabel was not detected other than in the proximal tubule. In addition, NaDC1 immunolabel was not detected in tumors of presumed proximal tubule origin, clear cell and papillary renal cell carcinoma, or in tumors of nonproximal tubule origin, oncocytoma and chromophobe carcinoma. In summary, 1) in the human kidney, apical NaDC1 immunolabel is present throughout the entire proximal tubule, and is not detectable in other renal cells; and 2) NaDC1 immunolabel is not present in renal tumors. These studies provide important information regarding NaDC1's role in human dicarboxylate metabolism.


Assuntos
Transportadores de Ácidos Dicarboxílicos/análise , Neoplasias Renais/química , Túbulos Renais Proximais/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/análise , Simportadores/análise , Western Blotting , Humanos , Imuno-Histoquímica , Neoplasias Renais/patologia , Túbulos Renais Proximais/patologia , Microvilosidades/química , Peso Molecular , Simportadores de Sódio-Bicarbonato/análise
7.
Biochim Biophys Acta ; 1852(9): 2000-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122267

RESUMO

Many calcium oxalate (CaOx) kidney stones develop attached to renal papillary sub-epithelial deposits of calcium phosphate (CaP), called Randall's plaque (RP). Pathogenesis of the plaques is not fully understood. We hypothesize that abnormal urinary environment in stone forming kidneys leads to epithelial cells losing their identity and becoming osteogenic. To test our hypothesis male rats were made hyperoxaluric by administration of hydroxy-l-proline (HLP). After 28days, rat kidneys were extracted. We performed genome wide analyses of differentially expressed genes and determined changes consistent with dedifferentiation of epithelial cells into osteogenic phenotype. Selected molecules were further analyzed using quantitative-PCR and immunohistochemistry. Genes for runt related transcription factors (RUNX1 and 2), zinc finger protein Osterix, bone morphogenetic proteins (BMP2 and 7), bone morphogenetic protein receptor (BMPR2), collagen, osteocalcin, osteonectin, osteopontin (OPN), matrix-gla-protein (MGP), osteoprotegrin (OPG), cadherins, fibronectin (FN) and vimentin (VIM) were upregulated while those for alkaline phosphatase (ALP) and cytokeratins 10 and 18 were downregulated. In conclusion, epithelial cells of hyperoxaluric kidneys acquire a number of osteoblastic features but without CaP deposition, perhaps a result of downregulation of ALP and upregulation of OPN and MGP. Plaque formation may additionally require localized increases in calcium and phosphate and decrease in mineralization inhibitory potential.

8.
Pediatr Nephrol ; 31(12): 2179-2189, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27384691

RESUMO

Minimal change disease (MCD) is the most common type of nephrotic syndrome in children and adolescents. The pathogenesis of proteinuria in this condition is currently being reassessed. Following the Shalhoub hypothesis, most efforts have been placed on identifying the putative circulating factor, but recent advancement in podocyte biology has focused attention on the molecular changes at the glomerular capillary wall, which could explain the mechanism of proteinuria in MCD. This report critically reviews current knowledge on the different postulated mechanisms at the glomerular capillary wall level for increased permeability to plasma proteins in MCD. The report helps describe the rationale behind novel therapies and suggests future targeted therapies for MCD.


Assuntos
Nefrose Lipoide/complicações , Proteinúria/etiologia , Adolescente , Criança , Humanos , Nefrose Lipoide/sangue , Nefrose Lipoide/patologia , Proteinúria/sangue
11.
JASA Express Lett ; 4(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426889

RESUMO

The discovery that listeners more accurately identify words repeated in the same voice than in a different voice has had an enormous influence on models of representation and speech perception. Widely replicated in English, we understand little about whether and how this effect generalizes across languages. In a continuous recognition memory study with Hindi speakers and listeners (N = 178), we replicated the talker-specificity effect for accuracy-based measures (hit rate and D'), and found the latency advantage to be marginal (p = 0.06). These data help us better understand talker-specificity effects cross-linguistically and highlight the importance of expanding work to less studied languages.


Assuntos
Percepção da Fala , Voz , Humanos , Idioma , Reconhecimento Psicológico
12.
Clin Pract ; 14(3): 882-891, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38804401

RESUMO

The inhibition of co-stimulation during T-cell activation has been shown to provide effective immunosuppression in kidney transplantation (KT). Hence, the conversion from calcineurin inhibitor (CNI) to belatacept is emerging as a potential alternate maintenance immunosuppressive therapy in those with transplant-associated thrombotic microangiopathy (TA-TMA) or in the prevention of TA-TMA. We present a 17-year-old male who presented with biopsy-proven CNI-associated TA-TMA immediately post-KT. The administration of eculizumab led to the reversal of TMA. Tacrolimus was converted to belatacept with excellent efficacy and safety during a short-term follow-up of one year. Further larger controlled studies are required to demonstrate the efficacy of this approach in children who present with early-onset TMA post-KT.

13.
Pediatr Rep ; 16(1): 26-34, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38251312

RESUMO

BACKGROUND: Hemolytic uremic syndrome (HUS) may present atypically without the full triad of classical HUS. Eculizumab has been shown to be efficacious in complement-mediated atypical HUS and some cases of Shiga-toxin (ST) associated HUS. We report the utility of eculizumab in enteroaggregative E. coli (EAEC) associated HUS. CASE SUMMARY: A female toddler presented with hemolytic anemia, oliguric acute kidney injury (AKI) without thrombocytopenia, and peripheral schistocytes. The stool examination for ST was negative but positive for EAEC. She required several hemodialysis sessions and received one dosage of eculizumab with rapid reversal of AKI and hemolytic markers. A kidney biopsy revealed acute tubular injury and segmental glomerular basement membrane splitting. Genetic testing was negative for complement mutations or deficiencies. A follow-up six months later showed persistently normal renal function and hematological markers. CONCLUSION: The clinical and histological manifestations of non-ST-associated diarrheal HUS and the role of eculizumab in this condition warrant future larger studies.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38813089

RESUMO

Artificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care. The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1 with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automated Computational Renal Pathology Suite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.

15.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38585837

RESUMO

Artificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care. The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1 with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automated Computational Renal Pathology Suite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.

16.
Sci Rep ; 14(1): 17528, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080444

RESUMO

HistoLens is an open-source graphical user interface developed using MATLAB AppDesigner for visual and quantitative analysis of histological datasets. HistoLens enables users to interrogate sets of digitally annotated whole slide images to efficiently characterize histological differences between disease and experimental groups. Users can dynamically visualize the distribution of 448 hand-engineered features quantifying color, texture, morphology, and distribution across microanatomic sub-compartments. Additionally, users can map differentially detected image features within the images by highlighting affected regions. We demonstrate the utility of HistoLens to identify hand-engineered features that correlate with pathognomonic renal glomerular characteristics distinguishing diabetic nephropathy and amyloid nephropathy from the histologically unremarkable glomeruli in minimal change disease. Additionally, we examine the use of HistoLens for glomerular feature discovery in the Tg26 mouse model of HIV-associated nephropathy. We identify numerous quantitative glomerular features distinguishing Tg26 transgenic mice from wild-type mice, corresponding to a progressive renal disease phenotype. Thus, we demonstrate an off-the-shelf and ready-to-use toolkit for quantitative renal pathology applications.


Assuntos
Camundongos Transgênicos , Animais , Camundongos , Glomérulos Renais/patologia , Rim/patologia , Nefropatias/patologia , Modelos Animais de Doenças , Nefropatias Diabéticas/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos
17.
Am J Physiol Renal Physiol ; 304(7): F972-81, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23324176

RESUMO

The ammonia transporter family member, Rh B Glycoprotein (RhBG/Rhbg), is essential for ammonia transport by the rodent kidney, but in the human kidney mRNA but not protein expression has been reported. Because ammonia transport is fundamental for acid-base homeostasis, the current study addressed RhBG expression in the human kidney. Two distinct RhBG mRNA sequences have been reported, with different numbers of consecutive cytosines at nt1265 and thus encoding different carboxy-tails. Sequencing the region of difference in both human kidney and liver mRNA showed eight sequential cytosines, not seven as in some reports. Knowing the correct mRNA sequence for RhBG, we then assessed RhBG protein expression using antibodies against the correct amino acid sequence. Immunoblot analysis demonstrated RhBG protein expression in human kidney and immunohistochemistry identified basolateral RhBG in connecting segment (CNT) and the cortical and outer medullary collecting ducts. Colocalization of RhBG with multiple cell-specific markers demonstrated that that CNT cells and collecting duct type A intercalated cells express high levels of RhBG, and type B intercalated cells and principal cells do not express detectable RhBG. Thus, these studies identify the correct mRNA and thus protein sequence for human RhBG and show that the human kidney expresses basolateral RhBG protein in CNT, type A intercalated cells, and non-A, non-B cells. We conclude that RhBG can mediate an important role in human renal ammonia transport.


Assuntos
Glicoproteínas/biossíntese , Túbulos Renais Coletores/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Sequência de Aminoácidos , Amônia/metabolismo , Animais , Sequência de Bases , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Alinhamento de Sequência
18.
Cognition ; 237: 105450, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37043968

RESUMO

Given any feasible amount of time, a talker would never be able to produce the same word twice in an identical manner. Yet recognition memory experiments have consistently used identical tokens to demonstrate that listeners recognize a word more quickly and accurately when it is repeated by the same talker than by a different talker. These talker-specificity effects have served as the foundation of decades of research in speech perception, but the use of identical tokens introduces a confound: Is it the talker or the physical stimulus that drives these effects? And consequently, to what extent do listeners encode the high-level acoustic characteristics of a talker's voice? We investigate the roles of token and talker repetition in two continuous recognition memory experiments. In Exp. 1, listeners heard the voice of one talker, with either Identical or Novel repeated tokens. In Exp. 2, listeners heard two demographically matched talkers, with same-voice repetitions being either Identical or Novel. Classic talker-specificity effects were replicated in both Identical and Novel tokens, but recognition of Identical tokens was in some cases stronger than recognition of Novel tokens. In addition, recognition memory varied across demographically matched talkers, suggesting stronger episodic encoding for one talker than for the other. We argue that novel tokens should serve as the default design for similar studies and that consideration of talker variation can advance our understanding of encoding and memory differences more broadly.


Assuntos
Percepção da Fala , Voz , Humanos , Reconhecimento Psicológico , Audição
19.
iScience ; 26(7): 107122, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416482

RESUMO

Gut dysbiosis has been associated with lupus pathogenesis, and fecal microbiota transfers (FMT) from lupus-prone mice shown to induce autoimmune activation into healthy mice. The immune cells of lupus patients exhibit an increased glucose metabolism and treatments with 2-deoxy-D-glucose (2DG), a glycolysis inhibitor, are therapeutic in lupus-prone mice. Here, we showed in two models of lupus with different etiologies that 2DG altered the composition of the fecal microbiome and associated metabolites. In both models, FMT from 2DG-treated mice protected lupus-prone mice of the same strain from the development of glomerulonephritis, reduced autoantibody production as well as the activation of CD4+ T cells and myeloid cells as compared to FMT from control mice. Thus, we demonstrated that the protective effect of glucose inhibition in lupus is transferable through the gut microbiota, directly linking alterations in immunometabolism to gut dysbiosis in the hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA