Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Trends Cell Biol ; 1(1): 30-4, 1991 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14731807

RESUMO

Eukaryotic cells contain a battery of cytosolic proteins that catalyse phospholipid movement in vitro. Current studies are now revealing some surprising aspects of the in vivo function of such proteins, and are also uncovering previously unsuspected relationships between secretory pathway function, intracellular phospholipid transport, phospholipid biosynthesis, and the dynamics of the actin cytoskeleton.

2.
J Cell Biol ; 109(6 Pt 1): 2939-50, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2687291

RESUMO

The budding mode of Saccharomyces cerevisiae cell growth demands that a high degree of secretory polarity be established and directed toward the emerging bud. We report here our demonstration that mutations in SAC1, a gene identified by virtue of its allele-specific genetic interactions with yeast actin defects, were also capable of suppressing sec14 lethalities associated with yeast Golgi defects. Moreover, these sac1 suppressor properties also extended to sec6 and sec9 secretory vesicle defects. The genetic data are consistent with the notion that SAC1p modulates both secretory pathway and actin cytoskeleton function. On this basis, we suggest that SAC1p may represent one aspect of the mechanism whereby secretory and cytoskeletal activities are coordinated, so that proper spatial regulation of secretion might be achieved.


Assuntos
Actinas/metabolismo , Genes Fúngicos , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/genética , Supressão Genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Genótipo , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Mutação , Mapeamento por Restrição , Saccharomyces cerevisiae/metabolismo , beta-Frutofuranosidase
3.
J Cell Biol ; 133(5): 1017-26, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8655575

RESUMO

Several physiologically important proteins lack a classical secretory signal sequence, yet they are secreted from cells. To investigate the secretion mechanism of such proteins, a representative mammalian protein that is exported by a nonclassical mechanism, galectin-1, has been expressed in yeast. Galectin-1 is exported across the yeast plasma membrane, and this export does not require the classical secretory pathway nor the yeast multidrug resistance-like protein Ste6p, the transporter for the peptide a factor. A screen for components of the export machinery has identified genes that are involved in nonclassical export. These findings demonstrate a new pathway for protein export that is distinct from the classical secretory pathway in yeast.


Assuntos
Proteínas Fúngicas/metabolismo , Glicoproteínas , Hemaglutininas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico Ativo/genética , DNA Complementar/genética , DNA Fúngico/genética , Epitopos/genética , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Galectina 1 , Genes Fúngicos , Hemaglutininas/genética , Hemaglutininas/imunologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
4.
J Cell Biol ; 122(1): 79-94, 1993 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8314848

RESUMO

Mutations in the SAC1 gene exhibit allele-specific genetic interactions with yeast actin structural gene defects and effect a bypass of the cellular requirement for the yeast phosphatidylinositol/phosphatidylcholine transfer protein (SEC14p), a protein whose function is essential for sustained Golgi secretory function. We report that SAC1p is an integral membrane protein that localizes to the yeast Golgi complex and to the yeast ER, but does not exhibit a detectable association with the bulk of the yeast F-actin cytoskeleton. The data also indicate that the profound in vivo effects on Golgi secretory function and the organization of the actin cytoskeleton observed in sac1 mutants result from loss of SAC1p function. This cosuppression of actin and SEC14p defects is a unique feature of sac1 alleles as mutations in other SAC genes that result in a suppression of actin defects do not result in phenotypic suppression of SEC14p defects. Finally, we report that sac1 mutants also exhibit a specific inositol auxotrophy that is not exhibited by the other sac mutant strains. This sac1-associated inositol auxotrophy is not manifested by measurable defects in de novo inositol biosynthesis, nor is it the result of some obvious defect in the ability of sac1 mutants to utilize inositol for phosphatidylinositol biosynthesis. Thus, sac1 mutants represent a novel class of inositol auxotroph in that these mutants appear to require elevated levels of inositol for growth. On the basis of the collective data, we suggest that SAC1p dysfunction exerts its pleiotropic effects on yeast Golgi function, the organization of the actin cytoskeleton, and the cellular requirement for inositol, through altered metabolism of inositol glycerophospholipids.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Inositol/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Alelos , Sequência de Bases , DNA Fúngico , Imunofluorescência , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Genes Fúngicos , Genótipo , Complexo de Golgi/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese , Oligodesoxirribonucleotídeos , Proteínas de Transferência de Fosfolipídeos , Monoéster Fosfórico Hidrolases , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Curr Biol ; 7(5): R318-20, 1997 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9115389

RESUMO

Recent evidence that a herpes virus protein lacking a classical secretory signal sequence can spread between cells in culture draws attention to a class of proteins that are transported into and out of cells by unconventional means.


Assuntos
Modelos Biológicos , Organelas/fisiologia , Proteínas/metabolismo , Animais , Transporte Biológico , Núcleo Celular/fisiologia , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , HIV-1/fisiologia , Herpesviridae/fisiologia , Sinais Direcionadores de Proteínas , Proteínas Virais/metabolismo
6.
Curr Biol ; 6(3): 276-8, 1996 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-8805237

RESUMO

Recent evidence that vacuolar enzymes in yeast can be delivered directly from the cytosol, rather than via the secretory pathway, alerts us to the increasing evidence for 'non-classical' forms of protein translocation that may involve ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas/metabolismo , Animais , Membrana Celular , Células Eucarióticas , Humanos , Organelas , Células Procarióticas
7.
Adv Microb Physiol ; 33: 73-144, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-1636512

RESUMO

A genetic analysis of secretory pathway function in yeast was initiated some 12 years ago in the laboratory of Randy Schekman. These mutants held great promise in terms of providing an experimental system with which molecular participants of secretory pathway function could be investigated. This early promise has not failed. For the last five years, analysis of yeast secretory pathway function has been at the cutting edge of our understanding of the mechanisms by which proteins travel between intracellular compartments. In some cases, Sacch. cerevisiae has provided a valuable in vivo corroboration of the concepts derived from biochemical studies of mammalian intercompartmental protein transport in vitro. In other cases, studies conducted in the yeast system have defined previously unanticipated involvements for known catalytic activities in the secretory process. It is clear that yeast will continue to play a major role in setting the pace of research directed towards a detailed molecular understanding of protein secretion. Since it is now apparent that the basic strategies that underlie secretory pathway function have been conserved among eukaryotes, further exploitation of the powerful and complementary yeast and mammalian experimental systems guarantees that the next decade will see even greater progress towards our understanding of protein secretion in eukaryotic cells than did the first.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/fisiologia , Proteínas Fúngicas/genética , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/genética
8.
9.
Clin Oncol (R Coll Radiol) ; 26(4): 185-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24566332

RESUMO

Advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT), may significantly benefit cervical cancer patients, in terms of reducing late toxicity and potentiating dose escalation. Given the steep dose gradients around the planning target volume (PTV) with IMRT planning, internal movement of organs during treatment may cause geographical miss of the target and unnecessary organs at risk (OAR) inclusion into high dose regions. It is therefore important to consider the extent and patterns of organ motion and to investigate potential image-guided radiotherapy (IGRT) solutions before implementing IMRT for cervical cancer. A systematic literature search was carried out using Medline, Embase, Cochrane Library, Web of Science, Cinahl and Pubmed. Database-appropriate search strategies were developed based upon terms for uterine neoplasms, IGRT, organ motion and target volume. In total, 448 studies were identified and screened to find 39 relevant studies, 12 of which were abstracts. These studies show that within the target volume for cervical cancer radiotherapy, uterine motion is greater than cervical. Uterine motion is predominantly influenced by bladder filling, cervical motion by rectal filling. Organ motion patterns are patient specific, with some having very little (5 mm) and others having much larger shifts (40 mm) of the target volume. Population-based clinical target volume (CTV)-PTV margins would be large (up to 4 cm around the uterus), resulting in unnecessary OAR inclusion within the PTV, reducing the benefits of IMRT. Potential solutions include anisotropic margins with increased margins in the anteroposterior and superoinferior directions, or greater PTV margins around the uterine fundus than the cervix. As pelvic organ motion seems to be patient specific, individualised PTV margins and adaptive IGRT strategies have also been recommended to ensure target volume coverage while increasing OAR sparing. Although these strategies are promising, they need significant validation before they can be adopted into clinical practice.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Movimento/fisiologia , Radioterapia Guiada por Imagem/métodos , Resultado do Tratamento
11.
Neurochem Res ; 22(8): 933-40, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9239748

RESUMO

Synaptic vesicles are released from membranes during incubation at 37 degrees C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTP gamma S (guanosine-5'O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo.


Assuntos
Trifosfato de Adenosina/farmacologia , Vesículas Sinápticas/metabolismo , Compostos de Alumínio/farmacologia , Animais , Brefeldina A , Sistema Livre de Células , Ciclopentanos/farmacologia , Citosol/metabolismo , Ensaio de Imunoadsorção Enzimática , Etilmaleimida/farmacologia , Fluoretos/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Técnicas In Vitro , Células PC12/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Vesículas Sinápticas/química , Temperatura
12.
Nature ; 347(6293): 561-2, 1990 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-2215682

RESUMO

Progression of proteins through the secretory pathway of eukaryotic cells involves a continuous rearrangement of macromolecular structures made up of proteins and phospholipids. The protein SEC14p is essential for transport of proteins from the yeast Golgi complex. Independent characterization of the SEC14 gene and the PIT1 gene, which encodes a phosphatidylinositol/phosphatidylcholine transfer protein in yeast, indicated that these two genes are identical. Phospholipid transfer proteins are a class of cytosolic proteins that are ubiquitous among eukaryotic cells and are distinguished by their ability to catalyse the exchange of phospholipids between membranes in vitro. We show here that the SEC14 and PIT1 genes are indeed identical and that the growth phenotype of a sec14-1ts mutant extends to the inability of its transfer protein to effect phospholipid transfer in vitro. These results therefore establish for the first time an in vivo function for a phospholipid transfer protein, namely a role in the compartment-specific stimulation of protein secretion.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas Fúngicas/metabolismo , Complexo de Golgi/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Íntrons , Proteínas de Membrana/genética , Mutação , Fenótipo , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos , Plasmídeos , Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico , Temperatura , Transfecção
13.
J Cell Sci Suppl ; 17: 81-3, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-7511619

RESUMO

The basic endosomal recycling pathway can be modified to generate transcytotic vesicles, storage vesicles and synaptic vesicles. Sorting into synaptic vesicles requires specialized sorting information not present in the transcytotic and storage vesicle proteins. Using mutagenesis we have distinguished the signals for rapid endocytosis and SV targeting in synaptobrevin. Finally, we have evidence that synaptic vesicles can be generated from an endosomal compartment in vitro.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Antígenos Virais de Tumores/genética , Células CHO , Polaridade Celular , Cricetinae , Endocitose , Epitopos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Células PC12 , Proteínas R-SNARE , Transdução de Sinais , Vesículas Sinápticas/ultraestrutura
14.
J Bacteriol ; 172(8): 4510-21, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2198263

RESUMO

The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for secretory protein movement from the Golgi complex. That some conservation of SEC14p function may exist was initially suggested by experiments that revealed immunoreactive polypeptides in cell extracts of the divergent yeasts Kluyveromyces lactis and Schizosaccharomyces pombe. We have cloned and characterized the K. lactis SEC14 gene (SEC14KL). Immunoprecipitation experiments indicated that SEC14KL encoded the K. lactis structural homolog of SEC14p. In agreement with those results, nucleotide sequence analysis of SEC14KL revealed a gene product of 301 residues (Mr, 34,615) and 77% identity to SEC14p. Moreover, a single ectopic copy of SEC14KL was sufficient to render S. cerevisiae sec14-1(Ts) mutants, or otherwise inviable sec14-129::HIS3 mutant strains, completely proficient for secretory pathway function by the criteria of growth, invertase secretion, and kinetics of vacuolar protein localization. This efficient complementation of sec14-129::HIS3 was observed to occur when the rates of SEC14pKL and SEC14p synthesis were reduced by a factor of 7 to 10 with respect to the wild-type rate of SEC14p synthesis. Taken together, these data provide evidence that the high level of structural conservation between SEC14p and SEC14pKL reflects a functional identity between these polypeptides as well. On the basis of the SEC14p and SEC14pKL primary sequence homology to the human retinaldehyde-binding protein, we suggest that the general function of these SEC14p species may be to regulate the delivery of a hydrophobic ligand to Golgi membranes so that biosynthetic secretory traffic can be supported.


Assuntos
Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Complexo de Golgi/metabolismo , Kluyveromyces/genética , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Proteínas de Schizosaccharomyces pombe , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/metabolismo , Deleção Cromossômica , Clonagem Molecular , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Genótipo , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Proteínas de Transferência de Fosfolipídeos , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , beta-Frutofuranosidase
15.
Cell ; 64(4): 789-800, 1991 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-1997207

RESUMO

SEC14p is the yeast phosphatidylinositol (PI)/phosphatidylcholine (PC) transfer protein, and it effects an essential stimulation of yeast Golgi secretory function. We now report that the SEC14p localizes to the yeast Golgi and that the SEC14p requirement can be specifically and efficiently bypassed by mutations in any one of at least six genes. One of these suppressor genes was the structural gene for yeast choline kinase (CKI), disruption of which rendered the cell independent of the normally essential SEC14p requirement. The antagonistic action of the CKI gene product on SEC14p function revealed a previously unsuspected influence of biosynthetic activities of the CDP-choline pathway for PC biosynthesis on yeast Golgi function and indicated that SEC14p controls the phospholipid content of yeast Golgi membranes in vivo.


Assuntos
Proteínas de Transporte/genética , Citidina Difosfato Colina/metabolismo , Genes Fúngicos , Genes Supressores , Proteínas de Membrana/genética , Proteínas de Transferência de Fosfolipídeos , Fosfolipídeos/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Genótipo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Supressão Genética
16.
Actual. pediátr ; 8(3): 120-125, sept.1988. tab
Artigo em Espanhol | LILACS | ID: lil-347463
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA