Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 14(4): 924-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22151385

RESUMO

Xenorhabdus bovienii (SS-2004) bacteria reside in the intestine of the infective-juvenile (IJ) stage of the entomopathogenic nematode, Steinernema jollieti. The recent sequencing of the X. bovienii genome facilitates its use as a model to understand host - symbiont interactions. To provide a biological foundation for such studies, we characterized X. bovienii in vitro and host interaction phenotypes. Within the nematode host X. bovienii was contained within a membrane bound envelope that also enclosed the nematode-derived intravesicular structure. Steinernema jollieti nematodes cultivated on mixed lawns of X. bovienii expressing green or DsRed fluorescent proteins were predominantly colonized by one or the other strain, suggesting the colonizing population is founded by a few cells. Xenorhabdus bovienii exhibits phenotypic variation between orange-pigmented primary form and cream-pigmented secondary form. Each form can colonize IJ nematodes when cultured in vitro on agar. However, IJs did not develop or emerge from Galleria mellonella insects infected with secondary form. Unlike primary-form infected insects that were soft and flexible, secondary-form infected insects retained a rigid exoskeleton structure. Xenorhabdus bovienii primary and secondary form isolates are virulent towards Manduca sexta and several other insects. However, primary form stocks present attenuated virulence, suggesting that X. bovienii, like Xenorhabdus nematophila may undergo virulence modulation.


Assuntos
Rabditídios/microbiologia , Xenorhabdus/classificação , Adolescente , Animais , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Fenótipo , Rabditídios/fisiologia , Simbiose , Virulência/fisiologia , Xenorhabdus/fisiologia
2.
Appl Microbiol Biotechnol ; 72(4): 713-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16489451

RESUMO

Bioassay screening of Bacillus thuringiensis culture supernatants identified strain EG2158 as having larvicidal activity against Colorado potato beetle (Leptinotarsa decemlineata) larvae. Ion-exchange fractionation of the EG2158 culture supernatant resulted in the identification of a protein designated Sip1A (secreted insecticidal protein) of approximately 38 kDa having activity against Colorado potato beetle (CPB). An oligonucleotide probe based on the N-terminal sequence of the purified Sip1A protein was used to isolate the sip1A gene. The sequence of the Sip1A protein, as deduced from the sequence of the cloned sip1A gene, contained 367 residues (41,492 Da). Recombinant B. thuringiensis and Escherichia coli harboring cloned sip1A produced Sip1A protein which had insecticidal activity against larvae of CPB, southern corn rootworm (Diabrotica undecimpunctata howardi), and western corn rootworm (Diabrotica virgifera virgifera).


Assuntos
Bacillus thuringiensis/química , Toxinas Bacterianas/farmacologia , Besouros/microbiologia , Larva/efeitos dos fármacos , Controle Biológico de Vetores , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Besouros/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/microbiologia
3.
Proc Natl Acad Sci U S A ; 102(48): 17290-5, 2005 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-16293685

RESUMO

Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. Growth-chamber studies demonstrated wheat rust control at multiple plant growth stages with a glyphosate spray dose typically recommended for weed control. Rust control was absent in formulation controls without glyphosate, dependent on systemic glyphosate concentrations in leaf tissues, and not mediated through induction of four common systemic acquired resistance genes. A field test with endemic stripe rust inoculum confirmed the activities of glyphosate pre- and postinfestation. Preliminary greenhouse studies also demonstrated that application of glyphosate in glyphosate-resistant soybeans suppressed Asian soybean rust, caused by Phakopsora pachyrhizi.


Assuntos
Antifúngicos/toxicidade , Basidiomycota/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Glycine max , Glicina/análogos & derivados , Doenças das Plantas/microbiologia , Triticum , Agricultura/métodos , Radioisótopos de Carbono/metabolismo , Primers do DNA , Glicina/farmacologia , Imunidade Inata/genética , Doenças das Plantas/genética , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA