Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 251, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584777

RESUMO

AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too. Here we show that AMBRA1 is phosphorylated during mitosis on multiple sites by CDK1 and PLK1, two mitotic kinases. Moreover, we demonstrate that AMBRA1 phosphorylation at mitosis is required for a proper spindle function and orientation, driven by NUMA1 protein. Indeed, we show that the localization and/or dynamics of NUMA1 are strictly dependent on AMBRA1 presence, phosphorylation and binding ability. Since spindle orientation is critical for tissue morphogenesis and differentiation, our findings could account for an additional role of AMBRA1 in development and cancer ontogenesis.


Assuntos
Proteínas Serina-Treonina Quinases , Fuso Acromático , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Ciclo Celular , Células HeLa , Proteína Quinase CDC2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075110

RESUMO

The homeostatic control of lipid metabolism is essential for many fundamental physiological processes. A deep understanding of its regulatory mechanisms is pivotal to unravel prospective physiopathological factors and to identify novel molecular targets that could be employed to design promising therapies in the management of lipid disorders. Here, we investigated the role of bromodomain and extraterminal domain (BET) proteins in the regulation of lipid metabolism. To reach this aim, we used a loss-of-function approach by treating HepG2 cells with JQ1, a powerful and selective BET inhibitor. The main results demonstrated that BET inhibition by JQ1 efficiently decreases intracellular lipid content, determining a significant modulation of proteins involved in lipid biosynthesis, uptake and intracellular trafficking. Importantly, the capability of BET inhibition to slow down cell proliferation is dependent on the modulation of cholesterol metabolism. Taken together, these data highlight a novel epigenetic mechanism involved in the regulation of lipid homeostasis.


Assuntos
Azepinas/farmacologia , Epigênese Genética/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas/metabolismo , Triazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas/antagonistas & inibidores , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
3.
Cells ; 9(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023189

RESUMO

Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.


Assuntos
Músculo Esquelético/fisiologia , Fator de Crescimento Neural/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Fenótipo
4.
Cancers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823532

RESUMO

Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration.

5.
Cell Signal ; 65: 109461, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678680

RESUMO

Glioblastoma, the most lethal form of brain cancer, is characterized by fast growth, migration and invasion of the surrounding parenchyma, with epithelial-to-mesenchymal transition (EMT)-like process being mostly responsible for tumour spreading and dissemination. A number of actors, including cadherins, vimentin, transcriptional factors such as SNAIL, play critical roles in the EMT process. The interleukin (IL)-6/STAT3 axis has been related to enhanced glioblastoma's migration and invasion abilities as well. Here, we present data on the differential effects of native and iron-saturated bovine lactoferrin (bLf), an iron-chelating glycoprotein of the innate immune response, in inhibiting migration in a human glioblastoma cell line. Through a wound healing assay, we found that bLf was able to partially or completely hinder cell migration, depending on its iron saturation rate. At a molecular level, bLf down-regulated both SNAIL and vimentin expression, while inducing a notable increase in cadherins' levels and inhibiting IL-6/STAT3 axis. Again, these effects positively correlated to bLf iron-saturation state, with the Holo-form resulting more efficient than the native one. Overall, our data suggest that bLf could represent a novel and efficient adjuvant treatment for glioblastoma's standard therapeutic approaches.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Lactoferrina/farmacologia , Fator de Transcrição STAT3/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactoferrina/química , Lactoferrina/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima , Vimentina/metabolismo
6.
Redox Biol ; 36: 101633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863211

RESUMO

Low-protein/high-carbohydrate (LPHC) diet has been suggested to promote metabolic health and longevity in adult humans and animal models. However, the complex molecular underpinnings of how LPHC diet leads to metabolic benefits remain elusive. Through a multi-layered approach, here we observed that LPHC diet promotes an energy-dissipating response consisting in the parallel recruitment of canonical and non-canonical (muscular) thermogenic systems in subcutaneous white adipose tissue (sWAT). In particular, we measured Ucp1 induction in association with up-regulation of actomyosin components and several Serca (Serca1, Serca2a, Serca2b) ATPases. In beige adipocytes, we observed that AMPK activation is responsible for transducing the amino acid lowering in an enhanced fat catabolism, which sustains both Ucp1-and Serca-dependent energy dissipation. Limiting AMPK activation counteracts the expression of brown fat and muscular genes, including Ucp1 and Serca, as well as mitochondrial oxidative genes. We observed that mitochondrial reactive oxygen species are the upstream molecules controlling AMPK-mediated metabolic rewiring in amino acid-restricted beige adipocytes. Our findings delineate a novel metabolic phenotype of responses to amino acid shortage, which recapitulates some of the benefits of cool temperature in sWAT. In conclusion, this highlights LPHC diet as a valuable and practicable strategy to prevent metabolic diseases through the enhancement of mitochondrial oxidative metabolism and the recruitment of different energy dissipating routes in beige adipocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Termogênese , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Carboidratos , Dieta , Metabolismo Energético , Humanos , Gordura Subcutânea/metabolismo
7.
Cancers (Basel) ; 11(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845654

RESUMO

Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event by which cancer cells acquire an invasive phenotype through the activation of specific transcription factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so far. This review summarizes the current understanding of the interplay between autophagy and EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for targeting these processes in future therapeutical approaches.

8.
Cell Signal ; 53: 357-364, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30442596

RESUMO

Autophagy is an evolutionary conserved process mediating lysosomal degradation of cytoplasmic material. Its involvement in cancer progression is highly controversial, due to its dual role in both limiting tumoural transformation and in protecting established tumoral cells from unfavorable conditions. Little is known about the cross-talk between autophagy and intracellular signalling pathways, as well as about autophagy impact on signalling molecules turnover. An aberrantly activated Wnt/ß-catenin signalling is responsible for tumour proliferation, invasion, and stemness maintenance. Here we show that autophagy negatively regulates Wnt/ß-catenin signalling in glioblastoma multiforme (GBM) cells, through Dishevelled degradation. We also provide the first evidence that autophagy promotes ß-catenin relocalisation within the cell, by inducing a decrease of the nuclear protein fraction. In particular, upon autophagy induction, ß-catenin appears mainly localized in sub-membrane areas where it associates with N-cadherin to form epithelial-like cell-cell adhesion structures. Our data indicate, for the first time, that autophagy induction results in Wnt signalling attenuation and in ß-catenin relocalisation within the GBM cell. These findings further support the idea that autophagy modulation could represent a potential therapeutical strategy to contrast GBM progression.


Assuntos
Autofagia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA