Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(9): e1010575, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36166479

RESUMO

With the aid of laboratory typing techniques, infectious disease surveillance networks have the opportunity to obtain powerful information on the emergence, circulation, and evolution of multiple genotypes, serotypes or other subtypes of pathogens, informing understanding of transmission dynamics and strategies for prevention and control. The volume of typing performed on clinical isolates is typically limited by its ability to inform clinical care, cost and logistical constraints, especially in comparison with the capacity to monitor clinical reports of disease occurrence, which remains the most widespread form of public health surveillance. Viewing clinical disease reports as arising from a latent mixture of pathogen subtypes, laboratory typing of a subset of clinical cases can provide inference on the proportion of clinical cases attributable to each subtype (i.e., the mixture components). Optimizing protocols for the selection of isolates for typing by weighting specific subpopulations, locations, time periods, or case characteristics (e.g., disease severity), may improve inference of the frequency and distribution of pathogen subtypes within and between populations. Here, we apply the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework to simulate and optimize hand foot and mouth disease (HFMD) surveillance in a high-burden region of western China. We identify laboratory surveillance designs that significantly outperform the existing network: the optimal network reduced mean absolute error in estimated serotype-specific incidence rates by 14.1%; similarly, the optimal network for monitoring severe cases reduced mean absolute error in serotype-specific incidence rates by 13.3%. In both cases, the optimal network designs achieved improved inference without increasing subtyping effort. We demonstrate how the DIOS framework can be used to optimize surveillance networks by augmenting clinical diagnostic data with limited laboratory typing resources, while adapting to specific, local surveillance objectives and constraints.


Assuntos
Doença de Mão, Pé e Boca , China/epidemiologia , Genótipo , Humanos , Incidência , Lactente , Sorogrupo
2.
Biometrics ; 79(2): 1507-1519, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191022

RESUMO

Passive surveillance systems are widely used to monitor diseases occurrence over wide spatial areas due to their cost-effectiveness and integration into broadly distributed healthcare systems. However, such systems are generally associated with imperfect ascertainment of disease cases and with heterogeneous capture probabilities arising from factors such as differential access to care. Augmenting passive surveillance systems with other surveillance efforts provides a way to estimate the true number of incident cases. We develop a hierarchical modeling framework for analyzing data from multiple surveillance systems that allows for individual-level covariate-dependent heterogeneous capture probabilities, and borrows information across surveillance sites to improve estimation of the true number of incident cases. Inference is carried out via a two-stage Bayesian procedure. Simulation studies illustrated superior performance of the proposed approach with respect to bias, root mean square error, and coverage compared to a model that does not borrow information across sites. We applied the proposed model to data from three surveillance systems reporting pulmonary tuberculosis (PTB) cases in a major center of ongoing transmission in China. The analysis yielded bias-corrected estimates of PTB cases from the passive system and led to the identification of risk factors associated with PTB rates, as well as factors influencing the operating characteristics of the implemented surveillance systems.


Assuntos
Vigilância em Saúde Pública , Humanos , Simulação por Computador , Teorema de Bayes , Análise de Dados , Tuberculose Pulmonar/epidemiologia , Fatores de Risco
3.
Proc Natl Acad Sci U S A ; 117(44): 27549-27555, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077583

RESUMO

Global food security is a major driver of population health, and food system collapse may have complex and long-lasting effects on health outcomes. We examined the effect of prenatal exposure to the Great Chinese Famine (1958-1962)-the largest famine in human history-on pulmonary tuberculosis (PTB) across consecutive generations in a major center of ongoing transmission in China. We analyzed >1 million PTB cases diagnosed between 2005 and 2018 in Sichuan Province using age-period-cohort analysis and mixed-effects metaregression to estimate the effect of the famine on PTB risk in the directly affected birth cohort (F1) and their likely offspring (F2). The analysis was repeated on certain sexually transmitted and blood-borne infections (STBBI) to explore potential mechanisms of the intergenerational effects. A substantial burden of active PTB in the exposed F1 cohort and their offspring was attributable to the Great Chinese Famine, with more than 12,000 famine-attributable active PTB cases (>1.23% of all cases reported between 2005 and 2018). An interquartile range increase in famine intensity resulted in a 6.53% (95% confidence interval [CI]: 1.19-12.14%) increase in the ratio of observed to expected incidence rate (incidence rate ratio, IRR) in the absence of famine in F1, and an 8.32% (95% CI: 0.59-16.6%) increase in F2 IRR. Increased risk of STBBI was also observed in F2. Prenatal and early-life exposure to malnutrition may increase the risk of active PTB in the exposed generation and their offspring, with the intergenerational effect potentially due to both within-household transmission and increases in host susceptibility.


Assuntos
Fome Epidêmica , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Inanição/complicações , Tuberculose Pulmonar/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Fatores de Risco , Inanição/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Adulto Jovem
4.
PLoS Comput Biol ; 16(12): e1008477, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33275606

RESUMO

Infectious disease surveillance systems provide vital data for guiding disease prevention and control policies, yet the formalization of methods to optimize surveillance networks has largely been overlooked. Decisions surrounding surveillance design parameters-such as the number and placement of surveillance sites, target populations, and case definitions-are often determined by expert opinion or deference to operational considerations, without formal analysis of the influence of design parameters on surveillance objectives. Here we propose a simulation framework to guide evidence-based surveillance network design to better achieve specific surveillance goals with limited resources. We define evidence-based surveillance design as an optimization problem, acknowledging the many operational constraints under which surveillance systems operate, the many dimensions of surveillance system design, the multiple and competing goals of surveillance, and the complex and dynamic nature of disease systems. We describe an analytical framework-the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework-for the identification of optimal surveillance designs through mathematical representations of disease and surveillance processes, definition of objective functions, and numerical optimization. We then apply the framework to the problem of selecting candidate sites to expand an existing surveillance network under alternative objectives of: (1) improving spatial prediction of disease prevalence at unmonitored sites; or (2) estimating the observed effect of a risk factor on disease. Results of this demonstration illustrate how optimal designs are sensitive to both surveillance goals and the underlying spatial pattern of the target disease. The findings affirm the value of designing surveillance systems through quantitative and adaptive analysis of network characteristics and performance. The framework can be applied to the design of surveillance systems tailored to setting-specific disease transmission dynamics and surveillance needs, and can yield improved understanding of tradeoffs between network architectures.


Assuntos
Doenças Transmissíveis/epidemiologia , Simulação por Computador , Interpretação Estatística de Dados , Vigilância da População/métodos , Humanos
5.
Proc Natl Acad Sci U S A ; 115(12): E2782-E2790, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29496960

RESUMO

Rotavirus is considered a directly transmitted disease due to its high infectivity. Environmental pathways have, therefore, largely been ignored. Rotavirus, however, persists in water sources, and both its surface water concentrations and infection incidence vary with temperature. Here, we examine the potential for waterborne rotavirus transmission. We use a mechanistic model that incorporates both direct and waterborne transmission pathways, coupled with a hydrological model, and we simulate rotavirus transmission between two communities with interconnected water sources. To parameterize temperature dependency, we estimated temperature-dependent decay rates in water through a meta-analysis. Our meta-analysis suggests that rotavirus decay rates are positively associated with temperature (n = 39, P [Formula: see text] 0.001). This association is stronger at higher temperatures (over 20 °C), consistent with tropical climate conditions. Our model analysis demonstrates that water could disseminate rotavirus between the two communities for all modeled temperatures. While direct transmission was important for disease amplification within communities, waterborne transmission could also amplify transmission. In standing-water systems, the modeled increase in decay led to decreased disease, with every 1 °C increase in temperature leading to up to a 2.4% decrease in incidence. These effect sizes are consistent with prior meta-analyses, suggesting that environmental transmission through water sources may partially explain the observed associations between temperature and rotavirus incidence. Waterborne rotavirus transmission is likely most important in cooler seasons and in communities that use slow-moving or stagnant water sources. Even when indirect transmission through water cannot sustain outbreaks, it can seed outbreaks that are maintained by high direct transmission rates.


Assuntos
Modelos Teóricos , Infecções por Rotavirus/transmissão , Surtos de Doenças , Equador/epidemiologia , Água Doce , Humanos , Hidrologia/métodos , Incidência , Rotavirus/patogenicidade , Infecções por Rotavirus/epidemiologia , Temperatura , Clima Tropical
6.
Clin Infect Dis ; 71(12): 3088-3095, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31879754

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), associated with severe manifestations of the disease. Pediatric immunization with inactivated EV71 vaccine was initiated in 2016 in the Asia-Pacific region, including China. We analyzed a time series of HFMD cases attributable to EV71, coxsackievirus A16 (CA16), and other enteroviruses in Chengdu, a major transmission center in China, to assess early impacts of immunization. METHODS: Reported HFMD cases were obtained from China's notifiable disease surveillance system. We compared observed postvaccination incidence rates during 2017-2018 with counterfactual predictions made from a negative binomial regression and a random forest model fitted to prevaccine years (2011-2015). We fit a change point model to the full time series to evaluate whether the trend of EV71 HFMD changed following vaccination. RESULTS: Between 2011 and 2018, 279 352 HFMD cases were reported in the study region. The average incidence rate of EV71 HFMD in 2017-2018 was 60% (95% prediction interval [PI], 41%-72%) lower than predicted in the absence of immunization, corresponding to an estimated 6911 (95% PI, 3246-11 542) EV71 cases averted over 2 years. There were 52% (95% PI, 42%-60%) fewer severe HFMD cases than predicted. However, the incidence rate of non-CA16 and non-EV71 HFMD was elevated in 2018. We identified a significant decline in the trend of EV71 HFMD 4 months into the postvaccine period. CONCLUSIONS: We provide the first real-world evidence that programmatic vaccination against EV71 is effective against childhood HFMD and present an approach to detect early vaccine impact or intended consequences from surveillance data.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Ásia , Criança , China/epidemiologia , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Lactente , Vacinas de Produtos Inativados
7.
Proc Biol Sci ; 287(1932): 20201065, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32752986

RESUMO

Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such 'transcritical variation', abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006-2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of Culex quinquefasciatus mosquitoes, forming distinctive inhibitory (10.0-21.0°C) and favourable (22.7-30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21-22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in Cx. quinquefasciatus pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds.


Assuntos
Temperatura , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental , Animais , California , Culex , Culicidae , Geografia , Humanos , Los Angeles/epidemiologia , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia
8.
Am J Epidemiol ; 188(8): 1475-1483, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31094412

RESUMO

Mass gatherings exacerbate infectious disease risks by creating crowded, high-contact conditions and straining the capacity of local infrastructure. While mass gatherings have been extensively studied in the context of epidemic disease transmission, the role of gatherings in incidence of high-burden, endemic infections has not been previously studied. Here, we examine diarrheal incidence among 17 communities in Esmeraldas, Ecuador, in relation to recurrent gatherings characterized using ethnographic data collected during and after the epidemiologic surveillance period (2004-2007). Using distributed-lag generalized estimating equations, adjusted for seasonality, trend, and heavy rainfall events, we found significant increases in diarrhea risk in host villages, peaking 2 weeks after an event's conclusion (incidence rate ratio, 1.21; confidence interval, adjusted for false coverage rate of ≤0.05: 1.02, 1.43). Stratified analysis revealed heightened risks associated with events where crowding and travel were most likely (2-week-lag incidence rate ratio, 1.51; confidence interval, adjusted for false coverage rate of ≤0.05: 1.09, 2.10). Our findings suggest that community-scale mass gatherings might play an important role in endemic diarrheal disease transmission and could be an important focus for interventions to improve community health in low-resource settings.


Assuntos
Aglomeração , Diarreia/epidemiologia , Fatores de Confusão Epidemiológicos , Surtos de Doenças , Equador/epidemiologia , Monitoramento Epidemiológico , Feminino , Humanos , Incidência , Masculino , Modelos Estatísticos , Fatores de Risco , População Rural , Viagem
9.
Am J Epidemiol ; 188(5): 950-959, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689681

RESUMO

The relationship between rainfall, especially extreme rainfall, and increases in waterborne infectious diseases is widely reported in the literature. Most of this research, however, has not formally considered the impact of exposure measurement error contributed by the limited spatiotemporal fidelity of precipitation data. Here, we evaluate bias in effect estimates associated with exposure misclassification due to precipitation data fidelity, using extreme rainfall as an example. We accomplished this via a simulation study, followed by analysis of extreme rainfall and incident diarrheal disease in an epidemiologic study in Ecuador. We found that the limited fidelity typical of spatiotemporal rainfall data sets biases effect estimates towards the null. Use of spatial interpolations of rain-gauge data or satellite data biased estimated health effects due to extreme rainfall (occurrence) and wet conditions (accumulated totals) downwards by 35%-45%. Similar biases were evident in the Ecuadorian case study analysis, where spatial incompatibility between exposed populations and rain gauges resulted in the association between extreme rainfall and diarrheal disease incidence being approximately halved. These findings suggest that investigators should pay greater attention to limitations in using spatially heterogeneous environmental data sets to assign exposures in epidemiologic research.


Assuntos
Chuva , Análise Espaço-Temporal , Doenças Transmitidas pela Água/epidemiologia , Confiabilidade dos Dados , Equador/epidemiologia , Métodos Epidemiológicos , Humanos
11.
Environ Sci Technol ; 51(4): 2186-2196, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28112914

RESUMO

As the appreciation for the importance of the environment in infectious disease transmission has grown, so too has interest in pathogen fate and transport. Fate has been traditionally described by simple exponential decay, but there is increasing recognition that some pathogens demonstrate a biphasic pattern of decay-fast followed by slow. While many have attributed this behavior to population heterogeneity, we demonstrate that biphasic dynamics can arise through a number of plausible mechanisms. We examine the identifiability of a general model encompassing three such mechanisms: population heterogeneity, hardening off, and the existence of viable-but-not-culturable states. Although the models are not fully identifiable from longitudinal sampling studies of pathogen concentrations, we use a differential algebra approach to determine identifiable parameter combinations. Through case studies using Cryptosporidium and Escherichia coli, we show that failure to consider biphasic pathogen dynamics can lead to substantial under- or overestimation of disease risks and pathogen concentrations, depending on the context. More reliable models for environmental hazards and human health risks are possible with an improved understanding of the conditions in which biphasic die-off is expected. Understanding the mechanisms of pathogen decay will ultimately enhance our control efforts to mitigate exposure to environmental contamination.


Assuntos
Cryptosporidium , Medição de Risco , Meio Ambiente , Escherichia coli , Humanos , Modelos Teóricos
12.
Crit Rev Environ Sci Technol ; 46(23-24): 1787-1833, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28757789

RESUMO

Flooding is known to facilitate infectious disease transmission, yet quantitative research on microbiological risks associated with floods has been limited. Pathogen fate and transport models provide a framework to examine interactions between landscape characteristics, hydrology, and waterborne disease risks, but have not been widely developed for flood conditions. We critically examine capabilities of current hydrological models to represent unusual flow paths, non-uniform flow depths, and unsteady flow velocities that accompany flooding. We investigate the theoretical linkages between hydrodynamic processes and spatio-temporally variable suspension and deposition of pathogens from soils and sediments; pathogen dispersion in flow; and concentrations of constituents influencing pathogen transport and persistence. Identifying gaps in knowledge and modeling practice, we propose a research agenda to strengthen microbial fate and transport modeling applied to inland floods: 1) development of models incorporating pathogen discharges from flooded sources (e.g., latrines), effects of transported constituents on pathogen persistence, and supply-limited pathogen transport; 2) studies assessing parameter identifiability and comparing model performance under varying degrees of process representation, in a range of settings; 3) development of remotely sensed datasets to support modeling of vulnerable, data-poor regions; and 4) collaboration between modelers and field-based researchers to expand the collection of useful data in situ.

13.
JAMA Netw Open ; 7(4): e247822, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652476

RESUMO

Importance: A SARS-CoV-2 vaccine was approved for adolescents aged 12 to 15 years on May 10, 2021, with approval for younger age groups following thereafter. The population level impact of the pediatric COVID-19 vaccination program has not yet been established. Objective: To identify whether California's pediatric COVID-19 immunization program was associated with changes in pediatric COVID-19 incidence and hospitalizations. Design, Setting, and Participants: A case series on COVID-19 vaccination including children aged 6 months to 15 years was conducted in California. Data were obtained on COVID-19 cases in California between April 1, 2020, and February 27, 2023. Exposure: Postvaccination evaluation periods spanned 141 days (June 10 to October 29, 2021) for adolescents aged 12 to 15 years, 199 days (November 29, 2021, to June 17, 2022) for children aged 5 to 11 years, and 225 days (July 17, 2022, to February 27, 2023) for those aged 6 to 59 months. During these periods, statewide vaccine coverage reached 53.5% among adolescents aged 12 to 15 years, 34.8% among children aged 5 to 11 years, and 7.9% among those aged 6 to 59 months. Main Outcomes and Measures: Age-stepped implementation of COVID-19 vaccination was used to compare observed county-level incidence and hospitalization rates during periods when each age group became vaccine eligible to counterfactual rates predicted from observations among other age groups. COVID-19 case and hospitalization data were obtained from the California reportable disease surveillance system. Results: Between April 1, 2020, and February 27, 2023, a total of 3 913 063 pediatric COVID-19 cases and 12 740 hospitalizations were reported in California. Reductions of 146 210 cases (95% prediction interval [PI], 136 056-158 948) were estimated among adolescents aged 12 to 15 years, corresponding to a 37.1% (35.5%-39.1%) reduction from counterfactual predictions. Reductions of 230 134 (200 170-265 149) cases were estimated among children aged 5 to 11 years, corresponding to a 23.7% (20.6%-27.3%) reduction from counterfactual predictions. No evidence of reductions in COVID-19 cases statewide were found among children aged 6 to 59 months (estimated averted cases, -259; 95% PI, -1938 to 1019), although low transmission during the evaluation period may have limited the ability to do so. An estimated 168 hospitalizations (95% PI, 42-324) were averted among children aged 6 to 59 months, corresponding to a 24.4% (95% PI, 6.1%-47.1%) reduction. In meta-analyses, county-level vaccination coverage was associated with averted cases for all age groups. Despite low vaccination coverage, pediatric COVID-19 immunization in California averted 376 085 (95% PI, 348 355-417 328) reported cases and 273 (95% PI, 77-605) hospitalizations among children aged 6 months to 15 years over approximately 4 to 7 months following vaccination availability. Conclusions and Relevance: The findings of this case series analysis of 3 913 063 cases suggest reduced pediatric SARS-CoV-2 transmission following immunization. These results support the use of COVID-19 vaccines to reduce COVID-19 incidence and hospitalization in pediatric populations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Criança , Adolescente , Hospitalização/estatística & dados numéricos , Incidência , Pré-Escolar , California/epidemiologia , Vacinas contra COVID-19/uso terapêutico , Lactente , Feminino , Masculino , Vacinação/estatística & dados numéricos , Programas de Imunização
14.
Arch Dermatol Res ; 315(4): 1037-1039, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36308559

RESUMO

Epigenetic (or DNA methylation) age is calculated based on methylation of certain cytosine-guanine (CpG) repeats, and it can accurately estimate one's chronologic age. Importantly, epigenetic age acceleration (EAA) is highly predictive of age-associated morbidity and all-cause mortality. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with significant systemic disease burden. Here, we performed a pilot study to calculate EAA from formalin-fixed paraffin-embedded skin samples using Illumina Infinium MethylationEpic BeadChip arrays. Our results demonstrated no significant difference in intrinsic EAA among HS compared to controls (- 1.00 years, p-value = 0.52), significant increases in both extrinsic EAA (13.72 years, p-value < 0.001) and PhenoAge acceleration (7.72 years, p-value = 0.003), and a significant decrease in GrimAge acceleration (- 5.14 years, p-value < 0.001). Our findings suggest that the acceleration of epigenetic age in the HS skin may be associated with extrinsic immune-related changes and can potentially serve as a biomarker of the present and/or future disease burden in HS patients.


Assuntos
Hidradenite Supurativa , Humanos , Hidradenite Supurativa/genética , Epigênese Genética , Projetos Piloto , Metilação de DNA , Pele , Envelhecimento/genética
15.
Res Sq ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693392

RESUMO

Background: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions. Methods: In this study, we use a distributed lag non-linear model to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China, stratified by prior water availability. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 (95% credible interval (CI): 1.02-1.83) occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Conclusions: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.

16.
Front Public Health ; 11: 1287678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106890

RESUMO

Introduction: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions, potentially due to the neglect of prior water availability in mosquito breeding sites as an effect modifier. Methods: In this study, we addressed this research gap by considering the impact of prior water availability for the first time. We measured prior water availability as the cumulative precipitation over the preceding 8 weeks and utilized a distributed lag non-linear model stratified by the level of prior water availability to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 [95% credible interval (CI): 1.02-1.83] occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Discussion: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.


Assuntos
Dengue , Animais , Dengue/epidemiologia , Água , Fatores de Tempo , Incidência , China/epidemiologia
17.
Commun Med (Lond) ; 3(1): 181, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097811

RESUMO

BACKGROUND: Healthcare restrictions during the COVID-19 pandemic, particularly in ophthalmology, led to a differential underutilization of care. An analytic approach is needed to characterize pandemic health services usage across many conditions. METHODS: A common analytical framework identified pandemic care utilization patterns across 261 ophthalmic diagnoses. Using a United States eye care registry, predictions of utilization expected without the pandemic were established for each diagnosis via models trained on pre-pandemic data. Pandemic effects on utilization were estimated by calculating deviations between observed and expected patient volumes from January 2020 to December 2021, with two sub-periods of focus: the hiatus (March-May 2020) and post-hiatus (June 2020-December 2021). Deviation patterns were analyzed using cluster analyses, data visualizations, and hypothesis testing. RESULTS: Records from 44.62 million patients and 2455 practices show lasting reductions in ophthalmic care utilization, including visits for leading causes of visual impairment (age-related macular degeneration, diabetic retinopathy, cataract, glaucoma). Mean deviations among all diagnoses are 67% below expectation during the hiatus peak, and 13% post-hiatus. Less severe conditions experience greater utilization reductions, with heterogeneities across diagnosis categories and pandemic phases. Intense post-hiatus reductions occur among non-vision-threatening conditions or asymptomatic precursors of vision-threatening diseases. Many conditions with above-average post-hiatus utilization pose a risk for irreversible morbidity, such as emergent pediatric, retinal, or uveitic diseases. CONCLUSIONS: We derive high-resolution insights on pandemic care utilization in the US from high-dimensional data using an analytical framework that can be applied to study healthcare disruptions in other settings and inform efforts to pinpoint unmet clinical needs.


The COVID-19 pandemic disrupted healthcare services globally, including eye care in the United States. Using a US eye disease database, we measured how the pandemic impacted patient visits for 261 eye diagnoses by comparing actual visit volumes for each diagnosis with what would have been expected without the pandemic. We identified groups of conditions with similar changes in visit levels and examined whether these shifts were related to characteristics of the diagnoses studied. We found extended decreases in patient presentations for most eye conditions, with greater reductions for less severe diagnoses, and with anomalies and differences in this trend across diagnosis categories and pandemic sub-periods. This highlights areas of potentially unmet need in vision care arising from the pandemic.

18.
J Occup Environ Med ; 65(5): e312-e318, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787539

RESUMO

OBJECTIVE: The aim of the study is to examine associations between years of firefighting service and eight chronological age-adjusted measures of blood leukocyte epigenetic age acceleration: Horvath, Hannum, SkinBloodClock, Intrinsic, Extrinsic, PhenoAge, GrimAge, and DNAm telomere length. METHODS: The study used a repeated measures analysis of data from 379 incumbent firefighters from eight career departments and 100 recruit firefighters from two of the departments, across the United States. RESULTS: Incumbent firefighters had on average greater epigenetic age acceleration compared with recruit firefighters, potentially due to the cumulative effect of occupational exposures. However, among incumbent firefighters, additional years of service were associated with epigenetic age deceleration, particularly for GrimAge, a strong predictor of mortality. CONCLUSIONS: Long-term studies with more specific occupational exposure classification are needed to better understand the relationship between years of service and aging biomarkers.


Assuntos
Bombeiros , Humanos , Estados Unidos/epidemiologia , Envelhecimento/genética , Estudos Longitudinais , Leucócitos , Epigênese Genética
19.
Epigenetics ; 17(13): 2006-2021, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35912433

RESUMO

Gestational age (GA) is an important determinant of child health and disease risk. Two epigenetic GA clocks have been developed using DNA methylation (DNAm) patterns in cord blood. We investigate the accuracy of GA clocks and determinants of epigenetic GA acceleration (GAA), a biomarker of biological ageing. We hypothesize that prenatal and birth characteristics are associated with altered GAA, thereby disrupting foetal biological ageing. We examined 372 mother-child pairs from the Center for the Health Assessment of Mothers and Children of Salinas study of primarily Latino farmworkers in California. Chronological GA was robustly correlated with epigenetic GA (DNAm GA) estimated by the Knight (r = 0.48, p < 2.2x10-16) and Bohlin clocks (r = 0.67, p < 2.2x10-16) using the Illumina 450K array in cord blood samples collected at birth. GA clock performance was robust, though slightly lower, using DNAm profiles from the Illumina EPIC array in a smaller subsample (Knight: r = 0.39, p < 3.5x10-5; Bohlin: r = 0.60, p < 7.7x10-12). After adjusting for confounders, high maternal serum triglyceride levels (Bohlin: ß = -0.01 days per mg/dL, p = 0.03), high maternal serum lipid levels (Bohlin: ß = -4.31x10-3 days per mg/dL, p = 0.04), preterm delivery (Bohlin: ß = -4.03 days, p = 9.64x10-4), greater maternal parity (Knight: ß = -4.07 days, p = 0.01; Bohlin: ß = -2.43 days, p = 0.01), and male infant sex (Knight: ß = -3.15 days, p = 3.10x10-3) were associated with decreased GAA.Prenatal and birth characteristics affect GAA in newborns. Understanding factors that accelerate or delay biological ageing at birth may identify early-life targets for disease prevention and improve ageing across the life-course. Future research should test the impact of altered GAA on the long-term burden of age-related diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Gravidez , Lactente , Feminino , Humanos , Recém-Nascido , Masculino , Idade Gestacional , Epigenômica , Vitaminas , Aceleração
20.
J R Soc Interface ; 18(177): 20200970, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849340

RESUMO

School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K-12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: -985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased.


Assuntos
COVID-19 , Criança , Humanos , Distanciamento Físico , Políticas , SARS-CoV-2 , Instituições Acadêmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA