Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 563(7733): 661-665, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464339

RESUMO

One of the hallmarks of quantum physics is the generation of non-classical quantum states and superpositions, which has been demonstrated in several quantum systems, including ions, solid-state qubits and photons. However, only indirect demonstrations of non-classical states have been achieved in mechanical systems, despite the scientific appeal and technical utility of such a capability1,2, including in quantum sensing, computation and communication applications. This is due in part to the highly linear response of most mechanical systems, which makes quantum operations difficult, as well as their characteristically low frequencies, which hinder access to the quantum ground state3-7. Here we demonstrate full quantum control of the mechanical state of a macroscale mechanical resonator. We strongly couple a surface acoustic-wave8 resonator to a superconducting qubit, using the qubit to control and measure quantum states in the mechanical resonator. We generate a non-classical superposition of the zero- and one-phonon Fock states and map this and other states using Wigner tomography9-14. Such precise, programmable quantum control is essential to a range of applications of surface acoustic waves in the quantum limit, including the coupling of disparate quantum systems15,16.

2.
Phys Rev Lett ; 124(24): 240502, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639797

RESUMO

Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al., Nature (London) 558, 264 (2018)NATUAS0028-083610.1038/s41586-018-0195-y; C. J. Axline et al., Nat. Phys. 14, 705 (2018)NPAHAX1745-247310.1038/s41567-018-0115-y; P. Campagne-Ibarcq et al., Phys. Rev. Lett. 120, 200501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.200501; N. Leung et al., npj Quantum Inf. 5, 18 (2019)2056-638710.1038/s41534-019-0128-0; Y. P. Zhong et al., Nat. Phys. 15, 741 (2019)NPAHAX1745-247310.1038/s41567-019-0507-7; A. Bienfait et al., Science 364, 368 (2019)SCIEAS0036-807510.1126/science.aaw8415]. Adiabatic protocols can overcome channel loss by transferring quantum states without populating the lossy communication channel. Here, we present a unique superconducting quantum communication system, comprising two superconducting qubits connected by a 0.73 m-long communication channel. Significantly, we can introduce large tunable loss to the channel, allowing exploration of different entanglement protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the deterministic generation of entangled Bell states with a fidelity of 96%, all without populating the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay method. We also explore the performance of the adiabatic protocol in the presence of significant channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving higher state transfer and entanglement fidelities than the relay method.

3.
Neuroimage ; 101: 215-24, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25019677

RESUMO

Electrocorticography (ECoG) in humans yields data with unmatched spatio-temporal resolution that provides novel insights into cognitive operations. However, the broader application of ECoG has been confounded by difficulties in accurately depicting individual data and performing statistically valid population-level analyses. To overcome these limitations, we developed methods for accurately registering ECoG data to individual cortical topology. We integrated this technique with surface-based co-registration and a mixed-effects multilevel analysis (MEMA) to control for variable cortical surface anatomy and sparse coverage across patients, as well as intra- and inter-subject variability. We applied this surface-based MEMA (SB-MEMA) technique to a face-recognition task dataset (n=22). Compared against existing techniques, SB-MEMA yielded results much more consistent with individual data and with meta-analyses of face-specific activation studies. We anticipate that SB-MEMA will greatly expand the role of ECoG in studies of human cognition, and will enable the generation of population-level brain activity maps and accurate multimodal comparisons.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Análise Multinível , Adulto , Encéfalo/anatomia & histologia , Eletrodos Implantados , Eletroencefalografia/normas , Face , Ritmo Gama/fisiologia , Humanos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia
4.
Science ; 380(6649): 1030-1033, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37289889

RESUMO

Linear optical quantum computing provides a desirable approach to quantum computing, with only a short list of required computational elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing using phonons in place of photons. Although single-phonon sources and detectors have been demonstrated, a phononic beam splitter element remains an outstanding requirement. Here we demonstrate such an element, using two superconducting qubits to fully characterize a beam splitter with single phonons. We further use the beam splitter to demonstrate two-phonon interference, a requirement for two-qubit gates in linear computing. This advances a new solid-state system for implementing linear quantum computing, further providing straightforward conversion between itinerant phonons and superconducting qubits.

5.
Science ; 364(6438): 368-371, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023919

RESUMO

Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Individual phonons in a resonant structure can be controlled and detected by superconducting qubits, enabling the coherent generation and measurement of complex stationary phonon states. We report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2-millimeter-long acoustic quantum communication channel, equivalent to a 500-nanosecond delay line, we demonstrate the emission and recapture of a phonon by one superconducting qubit, quantum state transfer between two superconducting qubits with a 67% efficiency, and, by partial transfer of a phonon, generation of an entangled Bell pair with a fidelity of 84%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA