Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 50(8): 4258-4271, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420130

RESUMO

The link between genomic structure and biological function is yet to be consolidated, it is, however, clear that physical manipulation of the genome, driven by the activity of a variety of proteins, is a crucial step. To understand the consequences of the physical forces underlying genome organization, we build a coarse-grained polymer model of the genome, featuring three fundamentally distinct classes of interactions: lengthwise compaction, i.e., compaction of chromosomes along its contour, self-adhesion among epigenetically similar genomic segments, and adhesion of chromosome segments to the nuclear envelope or lamina. We postulate that these three types of interactions sufficiently represent the concerted action of the different proteins organizing the genome architecture and show that an interplay among these interactions can recapitulate the architectural variants observed across the tree of life. The model elucidates how an interplay of forces arising from the three classes of genomic interactions can drive drastic, yet predictable, changes in the global genome architecture, and makes testable predictions. We posit that precise control over these interactions in vivo is key to the regulation of genome architecture.


Assuntos
Cromossomos , Genoma , Lâmina Nuclear , Cromossomos/química , Cromossomos/metabolismo , Genômica , Membrana Nuclear , Lâmina Nuclear/química , Lâmina Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34234013

RESUMO

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Assuntos
Bacteriófagos/genética , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Programas de Imunização , Administração por Inalação , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Dependovirus/genética , Armazenamento de Medicamentos , Feminino , Programas de Imunização/métodos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Estudo de Prova de Conceito , Temperatura
3.
Biophys J ; 122(9): 1633-1645, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36960531

RESUMO

Chromosomes endure mechanical stresses throughout the cell cycle; for example, resulting from the pulling of chromosomes by spindle fibers during mitosis or deformation of the nucleus during cell migration. The response to physical stress is closely related to chromosome structure and function. Micromechanical studies of mitotic chromosomes have revealed them to be remarkably extensible objects and informed early models of mitotic chromosome organization. We use a data-driven, coarse-grained polymer modeling approach to explore the relationship between the spatial organization of individual chromosomes and their emergent mechanical properties. In particular, we investigate the mechanical properties of our model chromosomes by axially stretching them. Simulated stretching led to a linear force-extension curve for small strain, with mitotic chromosomes behaving about 10-fold stiffer than interphase chromosomes. Studying their relaxation dynamics, we found that chromosomes are viscoelastic solids with a highly liquid-like, viscous behavior in interphase that becomes solid-like in mitosis. This emergent mechanical stiffness originates from lengthwise compaction, an effective potential capturing the activity of loop-extruding SMC complexes. Chromosomes denature under large strains via unraveling, which is characterized by opening of large-scale folding patterns. By quantifying the effect of mechanical perturbations on the chromosome's structural features, our model provides a nuanced understanding of in vivo mechanics of chromosomes.


Assuntos
Cromatina , Cromossomos , Cromatina/metabolismo , Núcleo Celular/metabolismo , Mitose , Ciclo Celular
4.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511693

RESUMO

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Assuntos
COVID-19 , Vacinas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
5.
Nucleic Acids Res ; 49(D1): D172-D182, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33021634

RESUMO

We introduce the Nucleome Data Bank (NDB), a web-based platform to simulate and analyze the three-dimensional (3D) organization of genomes. The NDB enables physics-based simulation of chromosomal structural dynamics through the MEGABASE + MiChroM computational pipeline. The input of the pipeline consists of epigenetic information sourced from the Encode database; the output consists of the trajectories of chromosomal motions that accurately predict Hi-C and fluorescence insitu hybridization data, as well as multiple observations of chromosomal dynamics in vivo. As an intermediate step, users can also generate chromosomal sub-compartment annotations directly from the same epigenetic input, without the use of any DNA-DNA proximity ligation data. Additionally, the NDB freely hosts both experimental and computational structural genomics data. Besides being able to perform their own genome simulations and download the hosted data, users can also analyze and visualize the same data through custom-designed web-based tools. In particular, the one-dimensional genetic and epigenetic data can be overlaid onto accurate 3D structures of chromosomes, to study the spatial distribution of genetic and epigenetic features. The NDB aims to be a shared resource to biologists, biophysicists and all genome scientists. The NDB is available at https://ndb.rice.edu.


Assuntos
Cromatina/ultraestrutura , Biologia Computacional/métodos , Bases de Dados Genéticas , Epigênese Genética , Genoma Humano , Células A549 , Cromatina/metabolismo , Humanos , Hibridização in Situ Fluorescente , Internet , Conformação Molecular , Anotação de Sequência Molecular , Software
6.
Nucleic Acids Res ; 48(W1): W25-W30, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32383764

RESUMO

The accurate and reliable prediction of the 3D structures of proteins and their assemblies remains difficult even though the number of solved structures soars and prediction techniques improve. In this study, a free and open access web server, AWSEM-Suite, whose goal is to predict monomeric protein tertiary structures from sequence is described. The model underlying the server's predictions is a coarse-grained protein force field which has its roots in neural network ideas that has been optimized using energy landscape theory. Employing physically motivated potentials and knowledge-based local structure biasing terms, the addition of homologous template and co-evolutionary restraints to AWSEM-Suite greatly improves the predictive power of pure AWSEM structure prediction. From the independent evaluation metrics released in the CASP13 experiment, AWSEM-Suite proves to be a reasonably accurate algorithm for free modeling, standing at the eighth position in the free modeling category of CASP13. The AWSEM-Suite server also features a front end with a user-friendly interface. The AWSEM-Suite server is a powerful tool for predicting monomeric protein tertiary structures that is most useful when a suitable structure template is not available. The AWSEM-Suite server is freely available at: https://awsem.rice.edu.


Assuntos
Estrutura Terciária de Proteína , Software , Algoritmos , Evolução Molecular , Dobramento de Proteína , Análise de Sequência de Proteína , Homologia Estrutural de Proteína
7.
J Chem Inf Model ; 60(2): 982-988, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31794216

RESUMO

Rational design of proteins via mutagenesis is crucial for several biotechnological applications. A significant challenge of the computational strategies used to predict optimized mutations is to understand the influence of each amino acid during the folding process. In the present work, chymotrypsin inhibitor 2 (CI2) and several of its designed mutants have been simulated using a non-native hydrophobic and electrostatic potential as a structure-based Cα model. Through these simulations, we could identify the most critical folding stage to accelerate CI2 and also the charged residues responsible for providing its thermostability. The replacement of ionizable residues for hydrophobic ones tended to promote the formation of the CI2 secondary structure in the early transition state, which speeds up folding. However, this same replacement destabilized the native structure, and there was a decrease in the protein thermostability. Such a simple method proved to be capable of providing valuable information about thermodynamics and kinetics of CI2 and its mutations, thus being a fast alternative to the study of rational protein design.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Peptídeos/genética , Proteínas de Plantas/genética , Conformação Proteica , Eletricidade Estática
8.
Proteins ; 86(11): 1184-1188, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30218467

RESUMO

The TKSAMC is a web server which calculates protein charge-charge interactions via the Tanford-Kirkwood Surface Accessibility model with the Monte Carlo method for sampling different protein protonation states. The optimization of charge-charge interactions via directed mutations has successfully enhanced the thermal stability of different proteins and could be a key to protein engineering improvement. The server presents the electrostatic free energy contribution of each polar-charged residue to the protein native state stability. Specific residues are suggested to be mutated for improving thermal stability. The choice of a residue is based on its fraction of side chain exposed to solvent and its positive free energy contribution, which tends to destabilize the protein native state. Any residue energy contribution can be shown as a function of pH condition. The web server is freely available at UNESP (São Paulo State University - DF/IBILCE): http://tksamc.df.ibilce.unesp.br and also on GitHub https://github.com/contessoto/tksamc.


Assuntos
Proteínas/química , Internet , Método de Monte Carlo , Mutação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas/genética , Software , Eletricidade Estática , Termodinâmica
9.
Proteins ; 81(10): 1727-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23609962

RESUMO

The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Proteínas , Análise dos Mínimos Quadrados , Análise Multivariada , Análise de Componente Principal , Proteínas/química , Proteínas/metabolismo , Termodinâmica
10.
Nat Commun ; 14(1): 326, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658127

RESUMO

We use data-driven physical simulations to study the three-dimensional architecture of the Aedes aegypti genome. Hi-C maps exhibit both a broad diagonal and compartmentalization with telomeres and centromeres clustering together. Physical modeling reveals that these observations correspond to an ensemble of 3D chromosomal structures that are folded over and partially condensed. Clustering of the centromeres and telomeres near the nuclear lamina appears to be a necessary condition for the formation of the observed structures. Further analysis of the mechanical properties of the genome reveals that the chromosomes of Aedes aegypti, by virtue of their atypical structural organization, are highly sensitive to the deformation of the nuclei. This last finding provides a possible physical mechanism linking mechanical cues to gene regulation.


Assuntos
Aedes , Animais , Aedes/genética , Sinais (Psicologia) , Telômero/genética , Estruturas Cromossômicas , Interfase
11.
J Mol Biol ; 435(15): 168180, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302549

RESUMO

The folding patterns of interphase genomes in higher eukaryotes, as obtained from DNA-proximity-ligation or Hi-C experiments, are used to classify loci into structural classes called compartments and subcompartments. These structurally annotated (sub) compartments are known to exhibit specific epigenomic characteristics and cell-type-specific variations. To explore the relationship between genome structure and the epigenome, we present PyMEGABASE (PYMB), a maximum-entropy-based neural network model that predicts (sub) compartment annotations of a locus based solely on the local epigenome, such as ChIP-Seq of histone post-translational modifications. PYMB builds upon our previous model while improving robustness, capability to handle diverse inputs and user-friendly implementation. We employed PYMB to predict subcompartments for over a hundred human cell types available in ENCODE, shedding light on the links between subcompartments, cell identity, and epigenomic signals. The fact that PYMB, trained on data for human cells, can accurately predict compartments in mice suggests that the model is learning underlying physicochemical principles transferable across cell types and species. Reliable at higher resolutions (up to 5 kbp), PYMB is used to investigate compartment-specific gene expression. Not only can PYMB generate (sub) compartment information without Hi-C experiments, but its predictions are also interpretable. Analyzing PYMB's trained parameters, we explore the importance of various epigenomic marks in each subcompartment prediction. Furthermore, the predictions of the model can be used as input for OpenMiChroM software, which has been calibrated to generate three-dimensional structures of the genome. Detailed documentation of PYMB is available at https://pymegabase.readthedocs.io, including an installation guide using pip or conda, and Jupyter/Colab notebook tutorials.


Assuntos
Cromossomos , Bases de Dados Genéticas , Epigenoma , Animais , Humanos , Camundongos , Cromatina , Cromossomos/metabolismo , Epigenoma/genética , Histonas/metabolismo , Redes Neurais de Computação , Software
12.
Curr Opin Struct Biol ; 75: 102418, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839701

RESUMO

In recent years, much effort has been devoted to understanding the three-dimensional (3D) organization of the genome and how genomic structure mediates nuclear function. The development of experimental techniques that combine DNA proximity ligation with high-throughput sequencing, such as Hi-C, have substantially improved our knowledge about chromatin organization. Numerous experimental advancements, not only utilizing DNA proximity ligation but also high-resolution genome imaging (DNA tracing), have required theoretical modeling to determine the structural ensembles consistent with such data. These 3D polymer models of the genome provide an understanding of the physical mechanisms governing genome architecture. Here, we present an overview of the recent advances in modeling the ensemble of 3D chromosomal structures by employing the maximum entropy approach combined with polymer physics. Particularly, we discuss the minimal chromatin model (MiChroM) along with the "maximum entropy genomic annotations from biomarkers associated with structural ensembles" (MEGABASE) model, which have been remarkably successful in the accurate modeling of chromosomes consistent with both Hi-C and DNA-tracing data.


Assuntos
Cromatina , Cromossomos , DNA , Física , Polímeros
13.
Methods Mol Biol ; 2376: 303-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845616

RESUMO

Computational coarse-grained models play a fundamental role as a research tool in protein folding, and they are important in bridging theory and experiments. Folding mechanisms are generally discussed using the energy landscape framework, which is well mapped within a class of simplified structure-based models. In this chapter, simplified computer models are discussed with special focus on structure-based ones.


Assuntos
Dobramento de Proteína , Simulação por Computador , Simulação de Dinâmica Molecular , Termodinâmica
14.
Protein Sci ; 31(1): 158-172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655449

RESUMO

Applying simulations with structure-based Go¯-like models has proven to be an effective strategy for investigating the factors that control biomolecular dynamics. The common element of these models is that some (or all) of the intra/inter-molecular interactions are explicitly defined to stabilize an experimentally determined structure. To facilitate the development and application of this broad class of models, we previously released the SMOG 2 software package. This suite allows one to easily customize and distribute structure-based (i.e., SMOG) models for any type of polymer-ligand system. The force fields generated by SMOG 2 may then be used to perform simulations in highly optimized MD packages, such as Gromacs, NAMD, LAMMPS, and OpenMM. Here, we describe extensions to the software and demonstrate the capabilities of the most recent version (SMOG v2.4.2). Changes include new tools that aid user-defined customization of force fields, as well as an interface with the OpenMM simulation libraries (OpenSMOG v1.1.0). The OpenSMOG module allows for arbitrary user-defined contact potentials and non-bonded potentials to be employed in SMOG models, without source-code modifications. To illustrate the utility of these advances, we present applications to systems with millions of atoms, long polymers and explicit ions, as well as models that include non-structure-based (e.g., AMBER-based) energetic terms. Examples include large-scale rearrangements of the SARS-CoV-2 Spike protein, the HIV-1 capsid with explicit ions, and crystallographic lattices of ribosomes and proteins. In summary, SMOG 2 and OpenSMOG provide robust support for researchers who seek to develop and apply structure-based models to large and/or intricate biomolecular systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Software , Animais , COVID-19/virologia , Humanos , Modelos Moleculares , Conformação Proteica , Ribossomos/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
15.
J Mol Biol ; 433(6): 166700, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33160979

RESUMO

Significant efforts have been recently made to obtain the three-dimensional (3D) structure of the genome with the goal of understanding how structures may affect gene regulation and expression. Chromosome conformational capture techniques such as Hi-C, have been key in uncovering the quantitative information needed to determine chromatin organization. Complementing these experimental tools, co-polymers theoretical methods are necessary to determine the ensemble of three-dimensional structures associated to the experimental data provided by Hi-C maps. Going beyond just structural information, these theoretical advances also start to provide an understanding of the underlying mechanisms governing genome assembly and function. Recent theoretical work, however, has been focused on single chromosome structures, missing the fact that, in the full nucleus, interactions between chromosomes play a central role in their organization. To overcome this limitation, MiChroM (Minimal Chromatin Model) has been modified to become capable of performing these multi-chromosome simulations. It has been upgraded into a fast and scalable software version, which is able to perform chromosome simulations using GPUs via OpenMM Python API, called Open-MiChroM. To validate the efficiency of this new version, analyses for GM12878 individual autosomes were performed and compared to earlier studies. This validation was followed by multi-chain simulations including the four largest human chromosomes (C1-C4). These simulations demonstrated the full power of this new approach. Comparison to Hi-C data shows that these multiple chromosome interactions are essential for a more accurate agreement with experimental results. Without any changes to the original MiChroM potential, it is now possible to predict experimentally observed inter-chromosome contacts. This scalability of Open-MiChroM allow for more audacious investigations, looking at interactions of multiple chains as well as moving towards higher resolution chromosomes models.


Assuntos
Cromatina/química , Cromossomos Humanos Par 1/química , Cromossomos Humanos Par 2/química , Cromossomos Humanos Par 3/química , Cromossomos Humanos Par 4/química , Simulação de Dinâmica Molecular , Software , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/ultraestrutura , Cromossomos Humanos Par 1/metabolismo , Cromossomos Humanos Par 1/ultraestrutura , Cromossomos Humanos Par 2/metabolismo , Cromossomos Humanos Par 2/ultraestrutura , Cromossomos Humanos Par 3/metabolismo , Cromossomos Humanos Par 3/ultraestrutura , Cromossomos Humanos Par 4/metabolismo , Cromossomos Humanos Par 4/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Saccharum/genética , Saccharum/metabolismo , Termodinâmica , Triticum/genética , Triticum/metabolismo
16.
J Phys Chem B ; 125(42): 11673-11686, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644091

RESUMO

Molecular crowding is a ubiquitous phenomenon in biological systems, with significant consequences on protein folding and stability. Small compounds, such as the osmolyte trimethylamine N-oxide (TMAO), can also present similar effects. To analyze the effects arising from these solute-like molecules, we performed a series of crowded coarse-grained folding simulations. Two well-known proteins were chosen, CI2 and SH3, modeled by the alpha-carbon-structure-based model. In the simulations, the crowding molecules were represented by low-sized neutral atom beads in different concentrations. The results show that a low level of the volume fraction occupied by neutral agents can change protein stability and folding kinetics for the two systems. However, the kinetics were shown to be unaffected in their respective folding temperatures. The faster kinetics correlates with changes in the folding route for systems at the same temperature, where non-native contacts were shown to be relevant. The transition states of the two systems with and without crowders are similar. In the case of SH3, there are differences in the structuring of two strands, which may be associated with the increase in its folding rate, in addition to the destabilization of the denatured ensemble. The present study also detected a crossover in the thermodynamic stability behavior, previously observed experimentally and theoretically. As the temperature increases, crowders change from destabilizing to stabilizing agents.


Assuntos
Dobramento de Proteína , Cinética , Estabilidade Proteica , Soluções , Termodinâmica
17.
J Phys Chem B ; 125(31): 8757-8767, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34319725

RESUMO

The human genome is organized within a nucleus where chromosomes fold into an ensemble of different conformations. Chromosome conformation capture techniques such as Hi-C provide information about the genome architecture by creating a 2D heat map. Initially, Hi-C map experiments were performed in human interphase cell lines. Recently, efforts were expanded to several different organisms, cell lines, tissues, and cell cycle phases where obtaining high-quality maps is challenging. Poor sampled Hi-C maps present high sparse matrices where compartments located far from the main diagonal are difficult to observe. Aided by recently developed models for chromatin folding and dynamics investigation, we introduce a framework to enhance the compartments' information far from the diagonal observed in experimental sparse matrices. The simulations were performed using the Open-MiChroM platform aided by new trained parameters in the minimal chromatin model (MiChroM) energy function. The simulations optimized on a downsampled experimental map (10% of the original data) allow the prediction of a contact frequency similar to that of the complete (100%) experimental Hi-C. The modeling results open a discussion on how simulations and modeling can increase the statistics and help fill in some Hi-C regions not captured by poor sampling experiments. Open-MiChroM simulations allow us to explore the 3D genome organization of different organisms, cell lines, and cell phases that often do not produce high-quality Hi-C maps.


Assuntos
Cromatina , Cromossomos , Núcleo Celular , Cromatina/genética , Cromossomos/genética , Genoma , Humanos , Conformação Molecular
18.
J Phys Chem B ; 125(17): 4359-4367, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887137

RESUMO

The rational improvement of the enzyme catalytic activity is one of the most significant challenges in biotechnology. Most conventional strategies used to engineer enzymes involve selecting mutations to increase their thermostability. Determining good criteria for choosing these substitutions continues to be a challenge. In this work, we combine bioinformatics, electrostatic analysis, and molecular dynamics to predict beneficial mutations that may improve the thermostability of XynA from Bacillus subtilis. First, the Tanford-Kirkwood surface accessibility method is used to characterize each ionizable residue contribution to the protein native state stability. Residues identified to be destabilizing were mutated with the corresponding residues determined by the consensus or ancestral sequences at the same locations. Five mutants (K99T/N151D, K99T, S31R, N151D, and K154A) were investigated and compared with 12 control mutants derived from experimental approaches from the literature. Molecular dynamics results show that the mutants exhibited folding temperatures in the order K99T > K99T/N151D > S31R > N151D > WT > K154A. The combined approaches employed provide an effective strategy for low-cost enzyme optimization needed for large-scale biotechnological and medical applications.


Assuntos
Bacillus subtilis , Endo-1,4-beta-Xilanases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Biologia Computacional , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Mutação , Eletricidade Estática
19.
bioRxiv ; 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34676381

RESUMO

Targeted bacteriophage (phage) particles are potentially attractive yet inexpensive platforms for immunization. Herein, we describe targeted phage capsid display of an immunogenically relevant epitope of the SARS-CoV-2 Spike protein that is empirically conserved, likely due to the high mutational cost among all variants identified to date. This observation may herald an approach to developing vaccine candidates for broad-spectrum, towards universal, protection against multiple emergent variants of coronavirus that cause COVID-19.

20.
bioRxiv ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33758865

RESUMO

Development of effective vaccines against Coronavirus Disease 2019 (COVID-19) is a global imperative. Rapid immunization of the world human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and many different vaccine approaches are being pursued to meet this task. Engineered filamentous bacteriophage (phage) have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the design, development, and initial evaluation of targeted phage-based vaccination approaches against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) by using dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. Towards a unique phage- and AAVP-based dual-display candidate approach, we first performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein for display on the recombinant major capsid coat protein pVIII. Targeted phage particles carrying one of these epitopes induced a strong and specific humoral response. In an initial experimental approach, when these targeted phage particles were further genetically engineered to simultaneously display a ligand peptide (CAKSMGDIVC) on the minor capsid protein pIII, which enables receptor-mediated transport of phage particles from the lung epithelium into the systemic circulation (termed "dual-display"), they enhanced a systemic and specific spike (S) protein-specific antibody response upon aerosolization into the lungs of mice. In a second line of investigation, we engineered targeted AAVP particles to deliver the entire S protein gene under the control of a constitutive cytomegalovirus (CMV) promoter, which induced tissue-specific transgene expression stimulating a systemic S protein-specific antibody response. As proof-of-concept preclinical experiments, we show that targeted phage- and AAVP-based particles serve as robust yet versatile enabling platforms for ligand-directed immunization and promptly yield COVID-19 vaccine prototypes for further translational development. SIGNIFICANCE: The ongoing COVID-19 global pandemic has accounted for over 2.5 million deaths and an unprecedented impact on the health of mankind worldwide. Over the past several months, while a few COVID-19 vaccines have received Emergency Use Authorization and are currently being administered to the entire human population, the demand for prompt global immunization has created enormous logistical challenges--including but not limited to supply, access, and distribution--that justify and reinforce the research for additional strategic alternatives. Phage are viruses that only infect bacteria and have been safely administered to humans as antibiotics for decades. As experimental proof-of-concept, we demonstrated that aerosol pulmonary vaccination with lung-targeted phage particles that display short epitopes of the S protein on the capsid as well as preclinical vaccination with targeted AAVP particles carrying the S protein gene elicit a systemic and specific immune response against SARS-CoV-2 in immunocompetent mice. Given that targeted phage- and AAVP-based viral particles are sturdy yet simple to genetically engineer, cost-effective for rapid large-scale production in clinical grade, and relatively stable at room temperature, such unique attributes might perhaps become additional tools towards COVID-19 vaccine design and development for immediate and future unmet needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA