Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 253(5027): 1528-31, 1991 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17784095

RESUMO

Plasma measurements were obtained with the Galileo spacecraft during an approximately 3.5-hour interval in the vicinity of Venus on 10 February 1990. Several crossings of the bow shock in the local dawn sector were recorded before the spacecraft passed into the solar wind upstream from this planet. Although observations of ions of the solar wind and the postshock magnetosheath plasmas were not possible owing to the presence of a sunshade for thermal protection of the instrument, solar wind densities and bulk speeds were determined from the electron velocity distributions. A magnetic field-aligned distribution of hotter electrons or ;;strahl'' was also found in the solar wind. Ions streaming into the solar wind from the bow shock were detected. Electron heating at the bow shock,

2.
Science ; 232(4748): 377-81, 1986 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17792149

RESUMO

The plasma wave instrument on the International Cometary Explorer (ICE) detected bursts of strong ion acoustic waves almost continuously when the spacecraft was within 2 million kilometers of the nucleus of comet Giacobini-Zinner. Electromagnetic whistlers and low-level electron plasma oscillations were also observed in this vast region that appears to be associated with heavy ion pickup. As ICE came closer to the anticipated location of the bow shock, the electromagnetic and electrostatic wave levels increased significantly, but even in the midst of this turbulence the wave instrument detected structures with familiar bow shock characteristics that were well correlated with observations of localized electron heating phenomena. Just beyond the visible coma, broadband waves with amplitudes as high as any ever detected by the ICE plasma wave instrument were recorded. These waves may account for the significant electron heating observed in this region by the ICE plasma probe, and these observations of strong wave-particle interactions may provide answers to longstanding questions concerning ionization processes in the vicinity of the coma. Near closest approach, the plasma wave instrument detected broadband electrostatic noise and a changing pattern of weak electron plasma oscillations that yielded a density profile for the outer layers of the cold plasma tail. Near the tail axis the plasma wave instrument also detected a nonuniform flux of dust impacts, and a preliminary profile of the Giacobini-Zinner dust distribution for micrometer-sized particles is presented.

3.
Science ; 274(5286): 394-5, 1996 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-8832882

RESUMO

Plasma measurements made during the flyby of Io on 7 December 1995 with the Galileo spacecraft plasma analyzers reveal that the spacecraft unexpectedly passed directly through the ionosphere of Io. The ionosphere is identified by a dense plasma that is at rest with respect to Io. This plasma is cool relative to those encountered outside the ionosphere. The composition of the ionospheric plasmas includes O++, O+ and S++, S+, and SO2+ ions. The plasma conditions at Io appear to account for the decrease in the magnetic field, without the need to assume that Io has a magnetized interior.


Assuntos
Íons , Júpiter , Meio Ambiente Extraterreno , Magnetismo , Oxigênio/análise , Enxofre/análise , Dióxido de Enxofre/análise
4.
Science ; 246(4936): 1494-8, 1989 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17756006

RESUMO

The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA