Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Soft Matter ; 20(26): 5122-5133, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894656

RESUMO

Solid particles placed at the interface between hydrogels and biological tissues can create an adhesive joint through the adsorption of macromolecules onto their surfaces. Here, we investigated how this adhesion by particle bridging depends on the wetting of tissue surfaces and on the heterogeneities in tissue composition. Ex vivo peeling experiments were performed using poly(ethylene glycol) films coated with aggregates of silica nanoparticles deposited on the internal tissues of porcine liver. We show that the adhesion produced by particle bridging is altered by the presence of fluid wetting the tissue-hydrogel interface. For both uncoated and coated films, a transition from lubricated to adhesive contact was observed when all the interfacial fluid was drained. The presence of a silica nanoparticle coating shifted the transition towards more hydrated conditions and significantly enhanced adhesion in the adhesive regime. After 5 min of contact, the adhesion energy achieved on liver parenchyma with the coated films (7.7 ± 1.9 J m-2) was more than twice that of the uncoated films (3.2 ± 0.3 J m-2) or with a surgical cyanoacrylate glue (2.9 ± 1.9 J m-2). Microscopic observations during and after peeling revealed different detachment processes through either particle detachment or cohesive fracture in the tissue. These mechanisms could be directly related to the microanatomy of the liver parenchyma. The effects of both interfacial wetting and tissue composition on adhesion may provide guidelines to tailor the design of tissue adhesives using particle bridging.


Assuntos
Hidrogéis , Fígado , Dióxido de Silício , Molhabilidade , Animais , Suínos , Hidrogéis/química , Dióxido de Silício/química , Nanopartículas/química , Polietilenoglicóis/química , Adesivos Teciduais/química
2.
Biomacromolecules ; 24(10): 4454-4464, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36780702

RESUMO

We report the synthesis of networks having adjustable topologies and mechanical properties. Our approach consists of photopolymerizing poly(ethylene glycol) diacrylates (PEG-DA) in the presence of mixtures of mono- and multifunctional thiols. We show that the introduction of monothiols as non-cross-linking transfer agents provides a simple way to tune the topology of the networks and produce soft extensible networks. In a systematic study with model short PEG-DA (Mn = 700 g·mol-1), we explored how the gel point and network properties, such as the swelling ratio, the soluble fraction, the viscoelastic moduli, and the ultimate stress and strain, can be adjusted by varying the ratio of thiol to acrylate functions and the average functionality of the thiol mixture. We applied this strategy to longer chains of PEG-DA (Mn = 2300 and 3200 g·mol-1) and varied the viscoelastic and tensile responses of these networks to optimize their adhesive performance. This simple and robust approach further enriches the toolbox of thiol-acrylate polymerization and expands the application scope of PEG-based hydrogels.


Assuntos
Hidrogéis , Polietilenoglicóis , Materiais Biocompatíveis , Acrilatos , Compostos de Sulfidrila
3.
Proc Natl Acad Sci U S A ; 116(3): 738-743, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602456

RESUMO

Attaching hydrogels to soft internal tissues is a key to the development of a number of biomedical devices. Nevertheless, the wet nature of hydrogels and tissues renders this adhesion most difficult to achieve and control. Here, we show that the transport of fluids across hydrogel-tissue interfaces plays a central role in adhesion. Using ex vivo peeling experiments on porcine liver, we characterized the adhesion between model hydrogel membranes and the liver capsule and parenchyma. By varying the contact time, the tissue hydration, and the swelling ratio of the hydrogel membrane, a transition between two peeling regimes is found: a lubricated regime where a liquid layer wets the interface, yielding low adhesion energies (0.1 J/m2 to 1 J/m2), and an adhesive regime with a solid binding between hydrogel and tissues and higher adhesion energies (1 J/m2 to 10 J/m2). We show that this transition corresponds to a draining of the interface inducing a local dehydration of the tissues, which become intrinsically adhesive. A simple model taking into account the microanatomy of tissues captures the transition for both the liver capsule and parenchyma. In vivo experiments demonstrate that this effect still holds on actively hydrated tissues like the liver capsule and show that adhesion can be strongly enhanced when using superabsorbent hydrogel meshes. These results shed light on the design of predictive bioadhesion tests as well as on the development of improved bioadhesive strategies exploiting interfacial fluid transport.


Assuntos
Hidrogéis/química , Adesivos Teciduais/química , Adesividade , Animais , Desidratação , Fígado , Estado de Hidratação do Organismo , Suínos
4.
Proc Natl Acad Sci U S A ; 113(47): 13295-13300, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821765

RESUMO

Hydrogel films used as membranes or coatings are essential components of devices interfaced with biological systems. Their design is greatly challenged by the need to find mild synthesis and processing conditions that preserve their biocompatibility and the integrity of encapsulated compounds. Here, we report an approach to produce hydrogel films spontaneously in aqueous polymer solutions. This method uses the solvent depletion created at the surface of swelling polymer substrates to induce the gelation of a thin layer of polymer solution. Using a biocompatible polymer that self-assembles at high concentration [poly(vinyl alcohol)], hydrogel films were produced within minutes to hours with thicknesses ranging from tens to hundreds of micrometers. A simple model and numerical simulations of mass transport during swelling capture the experiments and predict how film growth depends on the solution composition, substrate geometry, and swelling properties. The versatility of the approach was verified with a variety of swelling substrates and hydrogel-forming solutions. We also demonstrate the potential of this technique by incorporating other solutes such as inorganic particles to fabricate ceramic-hydrogel coatings for bone anchoring and cells to fabricate cell-laden membranes for cell culture or tissue engineering.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Hidrogéis/síntese química , Polímeros/química , Materiais Revestidos Biocompatíveis/química , Hidrogéis/química , Membranas Artificiais , Metilgalactosídeos/química , Soluções , Propriedades de Superfície , Água/química
5.
J Mater Sci Mater Med ; 28(8): 114, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28631013

RESUMO

Recently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration.


Assuntos
Osso e Ossos/patologia , Hidrogéis/química , Álcool de Polivinil , Próteses e Implantes , Animais , Materiais Biocompatíveis/química , Durapatita/química , Matriz Extracelular/metabolismo , Hidrólise , Ligamentos , Masculino , Teste de Materiais , Osseointegração , Osteólise , Polietilenotereftalatos/química , Coelhos , Microtomografia por Raio-X
6.
Langmuir ; 29(50): 15664-72, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24256321

RESUMO

Few surfaces can exist at rest in either wrinkled or unwrinkled states and switch reversibly between these states. Here, we report a new approach to creating reversibly wrinkling systems using the halogenation of rubber to induce a local increase in the glass-transition temperature within a thin layer at the surface. Such systems are obtained by the bromination of molded rubber films. By means of thermomechanical experiments and in situ observations, we show that microscopic wrinkles are produced by unstretching a stretched film below the glass-transition temperature of the brominated layer. These surface patterns are erased within seconds when the wrinkled layer is heated to above its glass transition and recovers its initial equilibrium dimensions. New wrinkles can be produced and erased repeatedly on the same surface. A model is proposed that takes into account the existence of a gradient in bromine content along the thickness of the modified layer. It describes the viscoelastic behavior of these brominated films and captures the temperature dependencies of the thickness of the glassy layer and of the wrinkle wavelength.

7.
Front Bioeng Biotechnol ; 10: 835094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433640

RESUMO

Since 5-10% of all bone fractures result in non-healing situations, a thorough understanding of the various bone fracture healing phases is necessary to propose adequate therapeutic strategies. In silico models have greatly contributed to the understanding of the influence of mechanics on tissue formation and resorption during the soft and hard callus phases. However, the late-stage remodeling phase has not been investigated from a mechanobiological viewpoint so far. Here, we propose an in silico multi-tissue evolution model based on mechanical strain accumulation to investigate the mechanobiological regulation of bone remodeling during the late phase of healing. Computer model predictions are compared to histological data of two different pre-clinical studies of bone healing. The model predicted the bone marrow cavity re-opening and the resorption of the external callus. Our results suggest that the local strain accumulation can explain the fracture remodeling process and that this mechanobiological response is conserved among different mammal species. Our study paves the way for further understanding of non-healing situations that could help adapting therapeutic strategies to foster bone healing.

8.
RSC Adv ; 12(33): 21079-21091, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35919836

RESUMO

Adsorption of particles across interfaces has been proposed as a way to create adhesion between hydrogels and biological tissues. Here, we explore how this particle bridging approach can be applied to attach a soft polymer substrate to biological tissues, using bioresorbable and nanostructured hydroxyapatite-bioactive glass microparticles. For this, microparticles of aggregated flower-like hydroxyapatite and bioactive glass (HA-BG) were synthesized via a bioinspired route. A deposition technique using suspension spreading was developed to tune the coverage of HA-BG coatings at the surface of weakly cross-linked poly(beta-thioester) films. By varying the concentration of the deposited suspensions, we produced coatings having surface coverages ranging from 4% to 100% and coating densities ranging from 0.02 to 1.0 mg cm-2. The progressive dissolution of these coatings within 21 days in phosphate-buffered saline was followed by SEM. Ex vivo peeling experiments on pig liver capsules demonstrated that HA-BG coatings produce an up-to-two-fold increase in adhesion energy (9.8 ± 1.5 J m-2) as compared to the uncoated film (4.6 ± 0.8 J m-2). Adhesion energy was found to increase with increasing coating density until a maximum at 0.2 mg cm-2, well below full surface coverage, and then it decreased for larger coating densities. Using microscopy observations during and after peeling, we show that this maximum in adhesion corresponds to the appearance of particle stacks, which are easily separated and transferred onto the tissue. Such bioresorbable HA-BG coatings give the possibility of combining particle bridging with the storage and release of active compounds, therefore offering opportunities to design functional bioadhesive surfaces.

9.
J Mech Behav Biomed Mater ; 136: 105426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208581

RESUMO

Impingement with surrounding tissues is a major cause of failure of anterior cruciate ligament reconstruction. However, the complexity of the knee kinematics and anatomical variations make it difficult to predict the occurrence of contact and the extent of the resulting damage. Here we hypothesise that a description of wear between the reconstructed ligament and adjacent structures captures the in vivo damage produced with physiological loadings. To test this, we performed an in vivo study on a sheep model and investigated the role of different sources of damage: overstretching, excessive twist, excessive compression, and wear. Seven sheep underwent cranial cruciate ligament reconstruction using a tendon autograft. Necropsy observations and pull-out force measurements performed postoperatively at three months showed high variability across specimens of the extent and location of graft damage. Using 3D digital models of each stifle based on X-ray imaging and kinematics measurements, we determined the relative displacements between the graft and the surrounding bones and computed a wear index describing the work of friction forces underwent by the graft during a full flexion-extension movement. While tensile strain, angle of twist and impingement volume showed no correlation with pull-out force (ρ = -0.321, p = 0.498), the wear index showed a strong negative correlation (r = -0.902, p = 0.006). Moreover, contour maps showing the distribution of wear on the graft were consistent with the observations of damage during the necropsy. These results demonstrate that wear is a good proxy of graft damage. The proposed wear index could be used in implant design and surgery planning to minimise the risk of implant failure. Its application to sheep can provide a way to increase preclinical testing efficiency.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Animais , Ovinos , Ligamento Cruzado Anterior/diagnóstico por imagem , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Tendões , Radiografia , Fenômenos Biomecânicos
10.
Carbohydr Polym ; 277: 118836, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893253

RESUMO

This work reports a rational design of injectable thermosensitive chitosan systems for cell encapsulation and delivery. Using mixtures of two phosphate salts, beta-glycerophosphate and ammonium hydrogen phosphate, we demonstrate that the pH and the osmolarity can be adjusted separately by varying the molar ratios between the salts and the d-glucosamine monomers. We found the existence of a critical temperature above which gelation time decays following a power-law. This gelation kinetics can be finely tuned through the pH and salt-glucosamine ratios. Formulations having physiological pH and osmolarity were produced for chitosan concentrations ranging from 0.4 to 0.9 wt%. They remain liquid for more than 2 h at 20 °C and form a macroporous gel within 2 min at 37 °C. In vitro encapsulation of pre-osteoblastic cells and gingival fibroblasts showed homogeneous cell distribution and good cell viability up to 24 h. Such an approach provides a valuable platform to design thermosensitive cell-laden systems.


Assuntos
Encapsulamento de Células , Quitosana/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Temperatura , Células 3T3 , Animais , Quitosana/administração & dosagem , Hidrogéis/administração & dosagem , Concentração de Íons de Hidrogênio , Camundongos , Estrutura Molecular
11.
ACS Appl Bio Mater ; 3(12): 8808-8819, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019556

RESUMO

The fixation of hydrogels to biological tissues is a major challenge conditioning the development of implants and surgical techniques. Here, coatings of procoagulant nanoparticles are devised which use the presence of blood to create adhesion between hydrogels and soft internal organs. Those nanostructured coatings are simply adsorbed at the hydrogel surfaces and can rapidly activate the formation of an interfacial blood clot acting as an adhesive joint. This concept is demonstrated on pig liver capsules with model poly(ethylene-glycol) membranes that are intrinsically poorly adhesive. In the absence of blood, ex vivo peeling tests show that coatings with aggregates of bare silica nanoparticles induce a 2- to 4-fold increase in adhesion energy as compared to the uncoated membrane (3 ± 2 J m-2). This effect is found to scale with the specific surface area of the coating. The highest adhesion energies produced by these nanoparticle-coated membranes (10 ± 5 J m-2) approach the value obtained with cyanoacrylate glue (33 ± 11 J m-2) for which tearing of the tissue is observed. Ex vivo pull-off tests show an adhesion strength of coated membranes around 5 ± 1 kPa, which is significantly reduced when operating in vivo (1.0 ± 0.5 kPa). Nevertheless, when blood is introduced at the interface, the in vivo adhesion strength can be improved remarkably with silica coatings, reaching 4 ± 2 kPa after 40 min contact. In addition, these silica-coated membranes can seal and stop the bleeding produced by liver biopsies very rapidly (<30 s). Such a combination of coagulation and particle bridging opens promising routes for better biointegrated hydrogel implants and improved surgical adhesives, hemostats, and sealants.

12.
J Tissue Eng Regen Med ; 13(12): 2191-2203, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31670903

RESUMO

In pathologies of the esophagus such as esophageal atresia, cancers, and caustic injuries, methods for full thickness esophageal replacement require the sacrifice of healthy intra-abdominal organs such as the stomach and the colon and are associated with high morbidity, mortality, and poor functional results. To overcome these problems, tissue engineering methods are developed to create a substitute with scaffolds and cells. The aim of this study was to develop a simple and safe decellularization process in order to obtain a clinical grade esophageal extracellular matrix. Following the decontamination step, porcine esophagi were decellularized in a bioreactor with sodium dodecyl sulfate and ethylenediaminetetraacetic acid for 3 days and were rinsed with deionized water. DNA was eliminated by a 3-hr DNase treatment. To remove any residual detergent, the matrix was then incubated with an absorbing resin. The resulting porcine esophageal matrix was characterized by the assessment of the efficiency of the decellularization process (DNA quantification), evaluation of sterility and absence of cytotoxicity, and its composition and biomechanical properties, as well as the possibility to be reseeded with mesenchymal stem cells. Complete decellularization with the preservation of the general structure, composition, and biomechanical properties of the native esophageal matrix was obtained. Sterility was maintained throughout the process, and the matrix showed no cytotoxicity. The resulting matrix met clinical grade criteria and was successfully reseeded with mesenchymal stem cells..


Assuntos
Esôfago/química , Matriz Extracelular/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Células-Tronco Mesenquimais/citologia , Suínos
13.
Biomatter ; 4: e28764, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482413

RESUMO

Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Próteses e Implantes , Substitutos Ósseos , Teste de Materiais/métodos , Microscopia Eletrônica , Álcool de Polivinil/química , Propriedades de Superfície
14.
J Biomech ; 46(8): 1463-70, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23562622

RESUMO

Prosthetic devices for anterior cruciate ligament (ACL) reconstruction have been unsuccessful due to mechanical failure or chronic inflammation. Polymer hydrogels combine biocompatibility and unique low friction properties; however, their prior use for ligament reconstruction has been restricted to coatings due to insufficient tensile mechanics. Here, we investigate new constructs of polyvinyl alcohol (PVA) hydrogel fibers. In water, these fibers swell to an equilibrium water content of 50% by weight, retaining a tensile modulus greater than 40 MPa along the fiber axis at low strain. Rope constructs were assembled for ACL replacement and mechanical properties were compared with data from the literature. Pure PVA hydrogel constructs closely reproduce the non-linear tensile stiffness of the native ACL with an ultimate strength of about 2000 N. An additional safety factor in tensile strength was achieved with composite braids by adding ultrahigh molecular weight polyethylene (UHMWPE) fibers around a core of PVA cords. Composition and braiding angle are adjusted to produce a non-linear tensile behavior within the range of the native ligament that can be predicted by a simple rope model. This design was found to sustain over one million cycles between 50 and 450 N with limited damage and less than 20% creep. The promising mechanical performances of these systems provide justification for more extensive in vivo evaluation.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Polietilenos/química , Álcool de Polivinil/química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Teste de Materiais , Porosidade , Próteses e Implantes , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA