Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 31(18): 5063-70, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25905988

RESUMO

COMOC-2, a flexible vanadium-containing metal-organic framework, was investigated for its adsorption and separation properties of light hydrocarbons. COMOC-2 is an extended version of the MIL-47 framework with 4,4'-biphenyldicarboxylic acid linkers instead of terephthalic acid. Adsorption isotherms of methane to propane, ethylene, and propylene were determined with a gravimetric uptake technique at temperatures between 281 and 303 K. A pronounced breathing effect was observed (in contrast to the more rigid MIL-47 framework) in which the adsorption capacity increases by more than a factor of 2 at a given breathing pressure. The breathing pressure decreases with increasing hydrocarbon molecular weight. The typical two-step isotherms are nearly identical for alkanes and alkenes, in accordance with the nonpolar nature of the material. Binary isotherms of ethane and propane were also measured with the gravimetric uptake technique at different temperatures and total pressures. The mixture isotherms and breathing transition pressures were predicted by relying on the osmotic framework adsorbed solution theory (OFAST). Finally, the separation potential of COMOC-2 for ethane/propane mixtures was looked into using breakthrough experiments for different compositions and different pressures.

2.
Inorg Chem ; 52(1): 113-20, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23256823

RESUMO

A vanadium based metal-organic framework (MOF), VO(BPDC) (BPDC(2-) = biphenyl-4,4'-dicarboxylate), adopting an expanded MIL-47 structure type, has been synthesized via solvothermal and microwave methods. Its structural and gas/vapor sorption properties have been studied. This compound displays a distinct breathing effect toward certain adsorptives at workable temperatures. The sorption isotherms of CO(2) and CH(4) indicate a different sorption behavior at specific temperatures. In situ synchrotron X-ray powder diffraction measurements and molecular simulations have been utilized to characterize the structural transition. The experimental measurements clearly suggest the existence of both narrow pore and large pore forms. A free energy profile along the pore angle was computationally determined for the empty host framework. Apart from a regular large pore and a regular narrow pore form, an overstretched narrow pore form has also been found. Additionally, a variety of spectroscopic techniques combined with N(2) adsorption/desorption isotherms measured at 77 K demonstrate that the existence of the mixed oxidation states V(III)/V(IV) in the titled MOF structure compared to pure V(IV) increases the difficulty in triggering the flexibility of the framework.


Assuntos
Dióxido de Carbono/química , Compostos Organometálicos/química , Vanádio/química , Adsorção , Metano/química , Micro-Ondas , Compostos Organometálicos/síntese química , Difração de Pó , Propriedades de Superfície , Síncrotrons
3.
Phys Chem Chem Phys ; 15(10): 3552-61, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23381460

RESUMO

Two perfluorinated metal hydroxo terephthalates [M(III)(OH)(BDC-F)]·n(guests) (M(III) = V, MIL-47-F-AS or 1-AS; Al, Al-MIL-53-F-AS or 2-AS) (BDC-F = 2-fluoro-1,4-benzenedicarboxylate; AS = as-synthesized) have been synthesized by a hydrothermal method using microwave irradiation (1-AS) or conventional electric heating (2-AS), respectively. The unreacted or occluded H(2)BDC-F molecules can be removed under vacuum by direct thermal activation or exchange of guest molecules followed by thermal treatment leading to the empty-pore forms of the title compounds [V(IV)(O)(BDC-F)] (MIL-47-F, 1) and [Al(III)(OH)(BDC-F)] (Al-MIL-53-F, 2). Thermogravimetric analysis (TGA) and temperature-dependent XRPD (TDXRPD) experiments indicate that the compounds are stable up to 385 and 480 °C, respectively. Both of the thermally activated compounds exhibit significant microporosity, as verified by N(2), CO(2), n-hexane, o- and p-xylene sorption analyses. The structural changes of 2 upon adsorption of CO(2), n-hexane, o- and p-xylene were highly influenced due to functionalization by -F groups, as compared to parent Al-MIL-53. The -F groups also introduce a certain degree of hydrophobicity into the frameworks, as demonstrated by the H(2)O sorption analyses.


Assuntos
Alumínio/química , Dióxido de Carbono/química , Compostos Organometálicos/química , Vanádio/química , Xilenos/química , Adsorção , Estrutura Molecular , Análise Espectral Raman
4.
Langmuir ; 28(39): 13883-91, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22958218

RESUMO

The low coverage adsorptive properties of the MIL-47 metal organic framework toward aromatic and heterocyclic molecules are reported in this paper. The effect of molecular functionality and size on Henry adsorption constants and adsorption enthalpies of alkyl and heteroatom functionalized benzene derivates and heterocyclic molecules was studied using pulse gas chromatography. By means of statistical analysis, experimental data was analyzed and modeled using principal component analysis and partial least-squares regression. Structure-property relationships were established, revealing and confirming several trends. Among the molecular properties governing the adsorption process, vapor pressure, mean polarizability, and dipole moment play a determining role.


Assuntos
Compostos Heterocíclicos/química , Hidrocarbonetos Aromáticos/química , Compostos Organometálicos/química , Adsorção , Cromatografia Gasosa , Estrutura Molecular , Propriedades de Superfície
5.
Phys Chem Chem Phys ; 14(44): 15562-70, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23073025

RESUMO

An amino functionalized vanadium-containing Metal Organic Framework, NH(2)-MIL-47, has been synthesized by a hydrothermal reaction in an autoclave. Alternatively, a synthesis route via microwave enhanced irradiation has been optimized to accelerate the synthesis. The NH(2)-MIL-47 exhibits the same topology as MIL-47, in which the V center is octahedrally coordinated. After an exchange procedure in DMF the V(+III) center is oxidized to V(+IV), which is confirmed by EPR and XPS measurements. The CO(2) and CH(4) adsorption properties have been evaluated and compared to MIL-47, showing that both MOFs have an almost similar adsorption capacity and affinity for CO(2). DFT-based molecular modeling calculations were performed to obtain more insight into the adsorption positions for CO(2) in NH(2)-MIL-47. Furthermore our calculated adsorption enthalpies agree well with the experimental values.

6.
Langmuir ; 27(7): 3970-6, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21375222

RESUMO

Some Metal Organic Frameworks (MOFs) show excellent performance in extracting carbon dioxide from different gas mixtures. The origin of their enhanced separation ability is not clear yet. Herein, we present a combined experimental and theoretical study of the amino-functionalized MIL-53(Al) to elucidate the mechanism behind its unusual high efficiency in CO(2) capture. Spectroscopic and DFT studies point out only an indirect role of amine moieties. In contrast to other amino-functionalized CO(2) sorbents, no chemical bond between CO(2) and the NH(2) groups of the structure is formed. We demonstrate that the functionalization modulates the "breathing" behavior of the material, that is, the flexibility of the framework and its capacity to alter the structure upon the introduction of specific adsorbates. The absence of strong chemical interactions with CO(2) is of high importance for the overall performance of the adsorbent, since full regeneration can be achieved within minutes under very mild conditions, demonstrating the high potential of this type of adsorbents for PSA like systems.

7.
J Am Chem Soc ; 132(7): 2284-92, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20121122

RESUMO

This work studies the liquid-phase separation of the aliphatic C(5)-diolefins, mono-olefins, and paraffins, a typical feed produced by a steam cracker, with a focus on the seldomly studied separation of the C(5)-diolefin isomers isoprene, trans-piperylene, and cis-piperylene. Three adsorbents are compared: the metal-organic framework MIL-96, which is an aluminum 1,3,5-benzenetricarboxylate, and two zeolites with CHA and LTA topology. All three materials have spacious cages that are accessible via narrow cage windows with a diameter of less than 0.5 nm. The mechanisms determining adsorption selectivities on the various materials are investigated. Within the diolefin fraction, MIL-96 and chabazite preferentially adsorb trans-piperylene from a mixture containing all three C(5)-diolefin isomers with high separation factors and a higher capacity compared to the reference zeolite 5A due to a more efficient packing of the trans isomer in the pores. Additionally, chabazite is able to separate cis-piperylene and isoprene based on size exclusion of the branched isomer. This makes chabazite suitable for separating all three diolefin isomers. Its use in separating linear from branched mono-olefins and paraffins is addressed as well. Furthermore, MIL-96 is the only material capable of separating all three diolefin isomers from C(5)-mono-olefins and paraffins. Finally, the MOF [Cu(3)(BTC)(2)] (BTC = benzene-1,3,5-tricarboxylate) is shown to be able to separate C(5)-olefins from paraffins. On the basis of these observations, a flow scheme can be devised in which the C(5)-fraction can be completely separated using a combination of MOFs and zeolites.

8.
J Am Chem Soc ; 132(43): 15277-85, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20942418

RESUMO

The metal-organic frameworks MIL-47 (V(IV)O{O(2)C-C(6)H(4)-CO(2)}) and MIL-53(Al) (Al(III)(OH)·{O(2)C-C(6)H(4)-CO(2)}) are capable of separating ethylbenzene and styrene. Both materials adsorb up to 20-24 wt % of both compounds. Despite the fact that they have identical building schemes, the reason for preferential adsorption of styrene compared to ethylbenzene is very different for the two frameworks. For MIL-47, diffraction experiments reveal that styrene is packed inside the pores in a unique, pairwise fashion, resulting in separation factors as high as 4 in favor of styrene. These separation factors are independent of the total amount of adsorbate offered. This is due to co-adsorption of ethylbenzene in the space left available between the packed styrene pairs. The separation is of a non-enthalpic nature. On MIL-53, the origin of the preferential adsorption of styrene is related to differences in enthalpy of adsorption, which are based on different degrees of framework relaxation. The proposed adsorption mechanisms are in line with the influence of temperature on the separation factors derived from pulse chromatography: separation factors are independent of temperature for MIL-47 but vary with temperature for MIL-53. Finally, MIL-53 is also capable of removing typical impurities like o-xylene or toluene from styrene-ethylbenzene mixtures.

10.
Phys Chem Chem Phys ; 12(32): 9413-8, 2010 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-20532387

RESUMO

Low-coverage adsorption properties of the metal-organic framework amino-MIL-53 (Al) were determined using the pulse chromatographic technique. By using n-alkanes, iso-alkanes, 1-alkenes, cyclohexane and benzene as probe molecules, the nature of the adsorptive interactions in amino-MIL-53 (Al) was studied. Henry adsorption constants and adsorption enthalpies of iso-alkanes are significantly lower than those of the linear alkanes, demonstrating the shape selective properties of amino-MIL-53. The presence of amino-groups in the pores of the material increases the electrostatic contributions with molecules containing double bonds. A simple model relates adsorption enthalpies to the number of hydrogen atoms and double bonds in the molecule. The effective pore size of the material was estimated based on the relationship between adsorption enthalpy and entropy.

11.
J Am Chem Soc ; 131(18): 6326-7, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19374416

RESUMO

Functionalizing the well-known MIL-53(Al) metal-organic framework with amino groups increases its selectivity in CO(2)/CH(4) separations by orders of magnitude while maintaining a very high capacity for CO(2) capture.

12.
Dalton Trans ; 45(23): 9485-91, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27192612

RESUMO

A new sulfone functionalized vanadium metal-organic framework (MOF), denoted as SO2-COMOC-2, has been synthesized solvothermally. Its structural and gas sorption properties towards CO2 and CH4 have been evaluated and compared to those of the pristine COMOC-2 material. The SO2-COMOC-2 shows a remarkable increase in CO2 capacity at ambient pressure (2.13 mmol g(-1) at 273 K vs. 1.23 mmol g(-1) for the pristine COMOC-2). Additionally, the high pressure CO2 sorption isotherm shows a distinctive two-step sorption behavior with a final capacity of 12.45 mmol g(-1) for SO2-COMOC-2 at 303 K, while for CH4 a typical Type I isotherm was obtained with a capacity of 4.13 mmol g(-1). In situ synchrotron X-ray powder diffraction measurements have been carried out to characterize the structural flexibility of the materials, showing both the presence of large pore and narrow pore form. Furthermore, synchrotron XANES and a variety of spectroscopic techniques have been utilized to verify the presence of hydroxyl groups and the existence of the mixed vanadium oxidation states in the titled MOF structure.

13.
ChemSusChem ; 5(4): 740-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22378615

RESUMO

The NH(2)-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO(2) from CH(4), H(2), N(2)C(2)H(6) and C(3)H(8) mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO(2) were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in situ XRD patterns measured during adsorption. Apart from CO(2), all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO(2) interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO(2) from other gases. The separation of CO(2) from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH(2)-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO(2) was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH(2)-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.


Assuntos
Aminas/química , Gases/química , Gases/isolamento & purificação , Compostos Organometálicos/química , Difração de Raios X , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA