Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110036

RESUMO

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Assuntos
Parede Celular , Lactococcus , Polissacarídeos Bacterianos , Ramnose , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Lactococcus/classificação , Lactococcus/citologia , Lactococcus/metabolismo , Lactococcus/virologia , Lipídeos , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/metabolismo , Conformação Proteica , Ramnose/metabolismo , Especificidade por Substrato , Bacteriófagos/fisiologia
2.
Appl Environ Microbiol ; 89(6): e0210322, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222606

RESUMO

Lactococcus lactis and Lactococcus cremoris are Gram-positive lactic acid bacteria widely used as starter in milk fermentations. Lactococcal cells are covered with a polysaccharide pellicle (PSP) that was previously shown to act as the receptor for numerous bacteriophages of the Caudoviricetes class. Thus, mutant strains lacking PSP are phage resistant. However, because PSP is a key cell wall component, PSP-negative mutants exhibit dramatic alterations of cell shape and severe growth defects, which limit their technological value. In the present study, we isolated spontaneous mutants with improved growth, from L. cremoris PSP-negative mutants. These mutants grow at rates similar to the wild-type strain, and based on transmission electron microscopy analysis, they exhibit improved cell morphology compared to their parental PSP-negative mutants. In addition, the selected mutants maintain their phage resistance. Whole-genome sequencing of several such mutants showed that they carried a mutation in pbp2b, a gene encoding a penicillin-binding protein involved in peptidoglycan biosynthesis. Our results indicate that lowering or turning off PBP2b activity suppresses the requirement for PSP and ameliorates substantially bacterial fitness and morphology. IMPORTANCE Lactococcus lactis and Lactococcus cremoris are widely used in the dairy industry as a starter culture. As such, they are consistently challenged by bacteriophage infections which may result in reduced or failed milk acidification with associated economic losses. Bacteriophage infection starts with the recognition of a receptor at the cell surface, which was shown to be a cell wall polysaccharide (the polysaccharide pellicle [PSP]) for the majority of lactococcal phages. Lactococcal mutants devoid of PSP exhibit phage resistance but also reduced fitness, since their morphology and division are severely impaired. Here, we isolated spontaneous, food-grade non-PSP-producing L. cremoris mutants resistant to bacteriophage infection with a restored fitness. This study provides an approach to isolate non-GMO phage-resistant L. cremoris and L. lactis strains, which can be applied to strains with technological functionalities. Also, our results highlight for the first time the link between peptidoglycan and cell wall polysaccharide biosynthesis.


Assuntos
Bacteriófagos , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Peptidoglicano/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Polissacarídeos/metabolismo , Mutação , Proteínas de Transporte/metabolismo
3.
J Biol Chem ; 295(16): 5519-5532, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32169901

RESUMO

Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall-associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.


Assuntos
Parede Celular/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxiaçúcares/metabolismo , Galactose/metabolismo , Glicosilação , Lactococcus lactis/genética , Lipopolissacarídeos/metabolismo , Mananas/metabolismo , Ácidos Teicoicos/metabolismo
4.
J Biol Chem ; 294(46): 17612-17625, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582566

RESUMO

In Lactococcus lactis, cell-wall polysaccharides (CWPSs) act as receptors for many bacteriophages, and their structural diversity among strains explains, at least partially, the narrow host range of these viral predators. Previous studies have reported that lactococcal CWPS consists of two distinct components, a variable chain exposed at the bacterial surface, named polysaccharide pellicle (PSP), and a more conserved rhamnan chain anchored to, and embedded inside, peptidoglycan. These two chains appear to be covalently linked to form a large heteropolysaccharide. The molecular machinery for biosynthesis of both components is encoded by a large gene cluster, named cwps In this study, using a CRISPR/Cas-based method, we performed a mutational analysis of the cwps genes. MALDI-TOF MS-based structural analysis of the mutant CWPS combined with sequence homology, transmission EM, and phage sensitivity analyses enabled us to infer a role for each protein encoded by the cwps cluster. We propose a comprehensive CWPS biosynthesis scheme in which the rhamnan and PSP chains are independently synthesized from two distinct lipid-sugar precursors and are joined at the extracellular side of the cytoplasmic membrane by a mechanism involving a membrane-embedded glycosyltransferase with a GT-C fold. The proposed scheme encompasses a system that allows extracytoplasmic modification of rhamnan by complex substituting oligo-/polysaccharides. It accounts for the extensive diversity of CWPS structures observed among lactococci and may also have relevance to the biosynthesis of complex rhamnose-containing CWPSs in other Gram-positive bacteria.


Assuntos
Parede Celular/metabolismo , Lactococcus lactis/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Parede Celular/química , Parede Celular/genética , Desoxiaçúcares/análise , Desoxiaçúcares/genética , Desoxiaçúcares/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lactococcus lactis/química , Lactococcus lactis/genética , Mananas/análise , Mananas/genética , Mananas/metabolismo , Família Multigênica , Polissacarídeos Bacterianos/análise , Polissacarídeos Bacterianos/genética
5.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085703

RESUMO

Clostridium difficile is the leading cause of antibiotic-associated diarrhea in adults. During infection, C. difficile must detect the host environment and induce an appropriate survival strategy. Signal transduction networks involving serine/threonine kinases (STKs) play key roles in adaptation, as they regulate numerous physiological processes. PrkC of C. difficile is an STK with two PASTA domains. We showed that PrkC is membrane associated and is found at the septum. We observed that deletion of prkC affects cell morphology with an increase in mean size, cell length heterogeneity, and presence of abnormal septa. A ΔprkC mutant was able to sporulate and germinate but was less motile and formed more biofilm than the wild-type strain. Moreover, a ΔprkC mutant was more sensitive to antimicrobial compounds that target the cell envelope, such as the secondary bile salt deoxycholate, cephalosporins, cationic antimicrobial peptides, and lysozyme. This increased susceptibility was not associated with differences in peptidoglycan or polysaccharide II composition. However, the ΔprkC mutant had less peptidoglycan and released more polysaccharide II into the supernatant. A proteomic analysis showed that the majority of C. difficile proteins associated with the cell wall were less abundant in the ΔprkC mutant than the wild-type strain. Finally, in a hamster model of infection, the ΔprkC mutant had a colonization delay that did not significantly affect overall virulence.


Assuntos
Proteínas de Bactérias/fisiologia , Clostridioides difficile/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Parede Celular/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Cricetinae , Farmacorresistência Bacteriana , Homeostase , Mesocricetus , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/genética , Virulência
6.
Mol Microbiol ; 104(6): 972-988, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28317238

RESUMO

The ability of excess Mg2+ to compensate the absence of cell wall related genes in Bacillus subtilis has been known for a long time, but the mechanism has remained obscure. Here, we show that the rigidity of wild-type cells remains unaffected with excess Mg2+ , but the proportion of amidated meso-diaminopimelic (mDAP) acid in their peptidoglycan (PG) is significantly reduced. We identify the amidotransferase AsnB as responsible for mDAP amidation and show that the gene encoding it is essential without added Mg2+ . Growth without excess Mg2+ causes ΔasnB mutant cells to deform and ultimately lyse. In cell regions with deformations, PG insertion is orderly and indistinguishable from the wild-type. However, PG degradation is unevenly distributed along the sidewalls. Furthermore, ΔasnB mutant cells exhibit increased sensitivity to antibiotics targeting the cell wall. These results suggest that absence of amidated mDAP causes a lethal deregulation of PG hydrolysis that can be inhibited by increased levels of Mg2+ . Consistently, we find that Mg2+ inhibits autolysis of wild-type cells. We suggest that Mg2+ helps to maintain the balance between PG synthesis and hydrolysis in cell wall mutants where this balance is perturbed in favor of increased degradation.


Assuntos
Ácido Diaminopimélico/metabolismo , Peptidoglicano/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Hidrólise , Magnésio/metabolismo , Peptidoglicano/biossíntese
7.
Proc Natl Acad Sci U S A ; 112(25): 7803-8, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056274

RESUMO

Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet(-/-) Rag2(-/-) mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631's beneficial effect in the T-bet(-/-) Rag2(-/-) model. Similar effects were obtained in two additional colonic inflammation models, Il10(-/-) mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2 (-)) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA's extracytoplasmic O2 (-) scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA's bioaccessibility.


Assuntos
Colite/metabolismo , Lactococcus lactis/metabolismo , Muramidase/metabolismo , Superóxido Dismutase/metabolismo , Animais , Colite/enzimologia , Colite/microbiologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo
8.
J Biol Chem ; 291(21): 11323-36, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27022026

RESUMO

To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes.


Assuntos
Lactococcus lactis/metabolismo , Nucleotídeos/metabolismo , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Elasticidade , Genes Bacterianos , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Muramidase/farmacologia , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo
9.
J Biol Chem ; 288(28): 20416-26, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23733182

RESUMO

Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.


Assuntos
Bacteriófagos/enzimologia , Endopeptidases/metabolismo , Lacticaseibacillus casei/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Amidas/metabolismo , Sequência de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacteriófagos/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Parede Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Endopeptidases/genética , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/virologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética , Prófagos/enzimologia , Prófagos/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
J Biol Chem ; 288(8): 5581-90, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23300085

RESUMO

Lactococcal phages Tuc2009 and TP901-1 possess a conserved tail fiber called a tail-associated lysin (referred to as Tal(2009) for Tuc2009, and Tal(901-1) for TP901-1), suspended from their tail tips that projects a peptidoglycan hydrolase domain toward a potential host bacterium. Tal(2009) and Tal(901-1) can undergo proteolytic processing mid-protein at the glycine-rich sequence GG(S/N)SGGG, removing their C-terminal structural lysin. In this study, we show that the peptidoglycan hydrolase of these Tal proteins is an M23 peptidase that exhibits D-Ala-D-Asp endopeptidase activity and that this activity is required for efficient infection of stationary phase cells. Interestingly, the observed proteolytic processing of Tal(2009) and Tal(901-1) facilitates increased host adsorption efficiencies of the resulting phages. This represents, to the best of our knowledge, the first example of tail fiber proteolytic processing that results in a heterogeneous population of two phage types. Phages that possess a full-length tail fiber, or a truncated derivative, are better adapted to efficiently infect cells with an extensively cross-linked cell wall or infect with increased host-adsorption efficiencies, respectively.


Assuntos
Lactococcus lactis/virologia , Siphoviridae/metabolismo , Adsorção , Aderência Bacteriana , Biologia Computacional/métodos , Hidrólise , Mutagênese , Peptidoglicano/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Siphoviridae/genética , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo
11.
J Biol Chem ; 288(31): 22233-47, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23760506

RESUMO

Acm2, the major autolysin of Lactobacillus plantarum, is a tripartite protein. Its catalytic domain is surrounded by an O-glycosylated N-terminal region rich in Ala, Ser, and Thr (AST domain), which is of low complexity and unknown function, and a C-terminal region composed of five SH3b peptidoglycan (PG) binding domains. Here, we investigate the contribution of these two accessory domains and of O-glycosylation to Acm2 functionality. We demonstrate that Acm2 is an N-acetylglucosaminidase and identify the pattern of O-glycosylation (21 mono-N-acetylglucosamines) of its AST domain. The O-glycosylation process is species-specific as Acm2 purified from Lactococcus lactis is not glycosylated. We therefore explored the functional role of O-glycosylation by purifying different truncated versions of Acm2 that were either glycosylated or non-glycosylated. We show that SH3b domains are able to bind PG and are responsible for Acm2 targeting to the septum of dividing cells, whereas the AST domain and its O-glycosylation are not involved in this process. Notably, our data reveal that the lack of O-glycosylation of the AST domain significantly increases Acm2 enzymatic activity, whereas removal of SH3b PG binding domains dramatically reduces this activity. Based on this antagonistic role, we propose a model in which access of the Acm2 catalytic domain to its substrate may be hindered by the AST domain where O-glycosylation changes its conformation and/or mediates interdomain interactions. To the best of our knowledge, this is the first time that O-glycosylation is shown to control the activity of a bacterial enzyme.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Acetilglucosaminidase/metabolismo , Sequência de Aminoácidos , Glicosilação , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/metabolismo , Microscopia de Força Atômica , Microscopia de Fluorescência , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Microbiology (Reading) ; 160(Pt 8): 1807-1819, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858286

RESUMO

Bacterial cell wall hydrolases are essential for peptidoglycan remodelling in regard to bacterial cell growth and division. In this study, peptidoglycan hydrolases (PGHs) of different Lactobacillus buchneri strains were investigated. First, the genome sequence of L. buchneri CD034 and L. buchneri NRRL B-30929 was analysed in silico for the presence of PGHs. Of 23 putative PGHs with different predicted hydrolytic specificities, the glycosyl hydrolase family 25 domain-containing homologues LbGH25B and LbGH25N from L. buchneri CD034 and NRRL B-30929, respectively, were selected and characterized in detail. Zymogram analysis confirmed hydrolysing activity on bacterial cell walls for both enzymes. Subsequent reversed-phase HPLC and MALDI-TOF MS analysis of the peptidoglycan breakdown products from L. buchneri strains CD034 and NRRL B-30929, and from Lactobacillus rhamnosus GG, which served as a reference, revealed that LbGH25B and LbGH25N have N-acetylmuramidase activity. Both enzymes were identified as cell wall-associated proteins by means of immunofluorescence microscopy and cellular fractionation, as well as by the ability of purified recombinant LbGH25B and LbGH25N to bind to L. buchneri cell walls in vitro. Moreover, similar secondary structures mainly composed of ß-sheets and nearly identical thermal stabilities with Tm values around 49 °C were found for the two N-acetylmuramidases by far-UV circular dichroism spectroscopy. The functional and structural data obtained are discussed and compared to related PGHs. In this study, a major N-acetylmuramidase from L. buchneri was characterized in detail for the first time.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Lactobacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/genética , Estabilidade Enzimática , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Lactobacillus/química , Lactobacillus/genética , Peptidoglicano/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico
13.
PLoS Pathog ; 8(6): e1002756, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719253

RESUMO

Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.


Assuntos
Antígenos de Bactérias/metabolismo , Parede Celular/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus agalactiae/fisiologia , Antígenos de Bactérias/química , Parede Celular/química , Eletroforese em Gel de Poliacrilamida , Cromatografia Gasosa-Espectrometria de Massas , Genes Bacterianos , Microscopia de Fluorescência , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/química , Streptococcus agalactiae/química
14.
Microbiology (Reading) ; 159(Pt 7): 1510-1520, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23676437

RESUMO

Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Resistência a Vancomicina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Genes Bacterianos , Genômica , Humanos , Testes de Sensibilidade Microbiana , Óperon/genética , Óperon/fisiologia , Filogenia , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo , Vancomicina/farmacologia
15.
Elife ; 122023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042660

RESUMO

Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.


Assuntos
Fenômenos Biológicos , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácidos Teicoicos/metabolismo , Sinais (Psicologia) , Lipopolissacarídeos/metabolismo
16.
Int J Food Microbiol ; 407: 110415, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37774633

RESUMO

Lactococcus spp. are applied routinely in dairy fermentations and their consistent growth and associated acidification activity is critical to ensure the quality and safety of fermented dairy foods. Bacteriophages pose a significant threat to such fermentations and thus it is imperative to study how these bacteria may evade their viral predators in the relevant confined settings. Many lactococcal phages are known to specifically recognise and bind to cell wall polysaccharides (CWPSs) and particularly the phospho-polysaccharide (PSP) side chain component that is exposed on the host cell surface. In the present study, we generated derivatives of a lactococcal strain with reduced phage sensitivity to establish the mode of phage evasion. The resulting mutants were characterized using a combination of comparative genome analysis, microbiological and chemical analyses. Using these approaches, it was established that the phage-resistant derivatives incorporated mutations in genes within the cluster associated with CWPS biosynthesis resulting in growth and morphological defects that could revert when the selective pressure of phages was removed. Furthermore, the cell wall extracts of selected mutants revealed that the phage-resistant strains produced intact PSP but in significantly reduced amounts. The reduced availability of the PSP and the ability of lactococcal strains to revert rapidly to wild type growth and activity in the absence of phage pressure provides Lactococcus with the means to survive and evade phage attack.


Assuntos
Bacteriófagos , Lactococcus lactis , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lactococcus lactis/metabolismo , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Parede Celular/metabolismo , Mutação
17.
Science ; 379(6634): 826-833, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821686

RESUMO

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Assuntos
Microbioma Gastrointestinal , Crescimento , Intestinos , Lactobacillaceae , Desnutrição , Proteína Adaptadora de Sinalização NOD2 , Animais , Camundongos , Parede Celular/química , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Transtornos do Crescimento/fisiopatologia , Transtornos do Crescimento/terapia , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Lactobacillaceae/fisiologia , Desnutrição/fisiopatologia , Desnutrição/terapia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Acetilmuramil-Alanil-Isoglutamina/uso terapêutico
18.
J Bacteriol ; 194(22): 6066-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961856

RESUMO

Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica/fisiologia , Amidoidrolases/genética , Animais , Proteínas de Bactérias/genética , DNA Bacteriano , Regulação Enzimológica da Expressão Gênica/fisiologia , Larva/microbiologia , Mariposas/microbiologia , Muramidase , Mutação , Plasmídeos , Virulência
19.
J Biol Chem ; 286(33): 29053-29062, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21685382

RESUMO

The structure of the vegetative cell wall peptidoglycan of Clostridium difficile was determined by analysis of its constituent muropeptides with a combination of reverse-phase high pressure liquid chromatography separation of muropeptides, amino acid analysis, mass spectrometry and tandem mass spectrometry. The structures assigned to 36 muropeptides evidenced several original features in C. difficile vegetative cell peptidoglycan. First, it is characterized by a strikingly high level of N-acetylglucosamine deacetylation. In addition, the majority of dimers (around 75%) contains A(2)pm(3) → A(2)pm(3) (A(2)pm, 2,6-diaminopimelic acid) cross-links and only a minority of the more classical Ala(4) → A(2)pm(3) cross-links. Moreover, a significant amount of muropeptides contains a modified tetrapeptide stem ending in Gly instead of D-Ala(4). Two L,D-transpeptidases homologues encoding genes present in the genome of C. difficile 630 and named ldt(cd1) and ldt(cd2), were inactivated. The inactivation of either ldt(cd1) or ldt(cd2) significantly decreased the abundance of 3-3 cross-links, leading to a marked decrease of peptidoglycan reticulation and demonstrating that both ldt(cd1)-and ldt(cd2)-encoded proteins have a redundant L,D-transpeptidase activity. The contribution of 3-3 cross-links to peptidoglycan synthesis increased in the presence of ampicillin, indicating that this drug does not inhibit the L,D-transpeptidation pathway in C. difficile.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Genoma Bacteriano/fisiologia , Peptidoglicano/biossíntese , Peptidil Transferases/metabolismo , Acetilglucosamina/química , Acetilglucosamina/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clostridioides difficile/química , Clostridioides difficile/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Peptidoglicano/química , Peptidoglicano/genética , Peptidil Transferases/química , Peptidil Transferases/genética
20.
J Biol Chem ; 286(27): 23950-8, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21586574

RESUMO

Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-L-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins.


Assuntos
Acetilglucosamina/metabolismo , Farmacorresistência Bacteriana/fisiologia , Lactobacillus plantarum/metabolismo , Peptidoglicano/metabolismo , Acetilação , Acetilglucosamina/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Lactobacillus plantarum/genética , Ácidos Murâmicos/metabolismo , Muramidase/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA