Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(46): 7853-7867, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722847

RESUMO

Because the sophistication of tool use is vastly enhanced in humans compared with other species, a rich understanding of its neural substrates requires neuroscientific experiments in humans. Although functional magnetic resonance imaging (fMRI) has enabled many studies of tool-related neural processing, surprisingly few studies have examined real tool use. Rather, because of the many constraints of fMRI, past research has typically used proxies such as pantomiming despite neuropsychological dissociations between pantomimed and real tool use. We compared univariate activation levels, multivariate activation patterns, and functional connectivity when participants used real tools (a plastic knife or fork) to act on a target object (scoring or poking a piece of putty) or pantomimed the same actions with similar movements and timing. During the Execute phase, we found higher activation for real versus pantomimed tool use in sensorimotor regions and the anterior supramarginal gyrus, and higher activation for pantomimed than real tool use in classic tool-selective areas. Although no regions showed significant differences in activation magnitude during the Plan phase, activation patterns differed between real versus pantomimed tool use and motor cortex showed differential functional connectivity. These results reflect important differences between real tool use, a closed-loop process constrained by real consequences, and pantomimed tool use, a symbolic gesture that requires conceptual knowledge of tools but with limited consequences. These results highlight the feasibility and added value of employing natural tool use tasks in functional imaging, inform neuropsychological dissociations, and advance our theoretical understanding of the neural substrates of natural tool use.SIGNIFICANCE STATEMENT The study of tool use offers unique insights into how the human brain synthesizes perceptual, cognitive, and sensorimotor functions to accomplish a goal. We suggest that the reliance on proxies, such as pantomiming, for real tool use has (1) overestimated the contribution of cognitive networks, because of the indirect, symbolic nature of pantomiming; and (2) underestimated the contribution of sensorimotor networks necessary for predicting and monitoring the consequences of real interactions between hand, tool, and the target object. These results enhance our theoretical understanding of the full range of human tool functions and inform our understanding of neuropsychological dissociations between real and pantomimed tool use.


Assuntos
Desempenho Psicomotor , Comportamento de Utilização de Ferramentas , Humanos , Desempenho Psicomotor/fisiologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem , Imageamento por Ressonância Magnética
2.
J Neurosci ; 43(32): 5831-5847, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474309

RESUMO

In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation. Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between prehension in isolation and prehension for object manipulation. Sixteen (seven males and nine females) participants were instructed either to simply grasp the handle of a rotatable dial (isolated prehension) or to grasp and turn it (prehension for object manipulation). We used representational similarity analysis (RSA) to investigate whether the experimental conditions could be discriminated from each other based on differences in task-related brain activation patterns. We also used temporal multivoxel pattern analysis (tMVPA) to examine the evolution of regional activation patterns over time. Importantly, we were able to differentiate isolated prehension and prehension for manipulation from activation patterns in the early visual cortex, the caudal intraparietal sulcus (cIPS), and the superior parietal lobule (SPL). Our findings indicate that object manipulation extends beyond the putative cortical grasping network (anterior intraparietal sulcus, premotor and motor cortices) to include the superior parietal lobule and early visual cortex.SIGNIFICANCE STATEMENT A simple act such as turning an oven dial requires not only that the CNS encode the initial state (starting dial orientation) of the object but also the appropriate posture to grasp it to achieve the desired end state (final dial orientation) and the motor commands to achieve that state. Using advanced temporal neuroimaging analysis techniques, we reveal how such actions unfold over time and how they differ between object manipulation (turning a dial) versus grasping alone. We find that a combination of brain areas implicated in visual processing and sensorimotor integration can distinguish between the complex and simple tasks during planning, with neural patterns that approximate those during the actual execution of the action.


Assuntos
Objetivos , Desempenho Psicomotor , Feminino , Humanos , Masculino , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Força da Mão/fisiologia , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia
3.
J Neurosci ; 43(49): 8504-8514, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37848285

RESUMO

Selecting suitable grasps on three-dimensional objects is a challenging visuomotor computation, which involves combining information about an object (e.g., its shape, size, and mass) with information about the actor's body (e.g., the optimal grasp aperture and hand posture for comfortable manipulation). Here, we used functional magnetic resonance imaging to investigate brain networks associated with these distinct aspects during grasp planning and execution. Human participants of either sex viewed and then executed preselected grasps on L-shaped objects made of wood and/or brass. By leveraging a computational approach that accurately predicts human grasp locations, we selected grasp points that disentangled the role of multiple grasp-relevant factors, that is, grasp axis, grasp size, and object mass. Representational Similarity Analysis revealed that grasp axis was encoded along dorsal-stream regions during grasp planning. Grasp size was first encoded in ventral stream areas during grasp planning then in premotor regions during grasp execution. Object mass was encoded in ventral stream and (pre)motor regions only during grasp execution. Premotor regions further encoded visual predictions of grasp comfort, whereas the ventral stream encoded grasp comfort during execution, suggesting its involvement in haptic evaluation. These shifts in neural representations thus capture the sensorimotor transformations that allow humans to grasp objects.SIGNIFICANCE STATEMENT Grasping requires integrating object properties with constraints on hand and arm postures. Using a computational approach that accurately predicts human grasp locations by combining such constraints, we selected grasps on objects that disentangled the relative contributions of object mass, grasp size, and grasp axis during grasp planning and execution in a neuroimaging study. Our findings reveal a greater role of dorsal-stream visuomotor areas during grasp planning, and, surprisingly, increasing ventral stream engagement during execution. We propose that during planning, visuomotor representations initially encode grasp axis and size. Perceptual representations of object material properties become more relevant instead as the hand approaches the object and motor programs are refined with estimates of the grip forces required to successfully lift the object.


Assuntos
Encéfalo , Desempenho Psicomotor , Humanos , Mapeamento Encefálico/métodos , Força da Mão , Mãos
4.
Exp Brain Res ; 239(3): 835-846, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33403432

RESUMO

Although visual feedback of the hand allows fast and accurate grasping actions, little is known about whether the nature of feedback of the hand affects performance. We investigated kinematics during precision grasping (with the index finger and thumb) when participants received different levels of hand feedback, with or without visual feedback of the target. Specifically, we compared performance when participants saw (1) no hand feedback; (2) only the two critical points on the index finger and thumb tips; (3) 21 points on all digit tips and hand joints; (4) 21 points connected by a "skeleton", or (5) full feedback of the hand wearing a glove. When less hand feedback was available, participants took longer to execute the movement because they allowed more time to slow the reach and close the hand. When target feedback was unavailable, participants took longer to plan the movement and reached with higher velocity. We were particularly interested in investigating maximum grip aperture (MGA), which can reflect the margin of error that participants allow to compensate for uncertainty. A trend suggested that MGA was smallest when ample feedback was available (skeleton and full hand feedback, regardless of target feedback) and when only essential information about hand and target was provided (2-point hand feedback + target feedback) but increased when non-essential points were included (21-point feedback). These results suggest that visual feedback of the hand affects grasping performance and that, while more feedback is usually beneficial, this is not necessarily always the case.


Assuntos
Força da Mão , Retroalimentação , Retroalimentação Sensorial , Mãos , Humanos , Movimento , Desempenho Psicomotor
5.
J Vis ; 21(10): 21, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581767

RESUMO

Although the familiar size of real-world objects affects size and distance perception, evidence is mixed about whether this is the case when oculomotor cues are available. We examined the familiar size effect (FSE) on both size and distance perception for real objects under two viewing conditions with full or restricted oculomotor cues (binocular viewing, which provides vergence and accommodation cues, and monocular viewing through a 1-mm pinhole, which removes those cues). Familiar objects (a playing die versus a Rubik's cube) were manufactured in their typical (1.6-cm die and 5.7-cm Rubik's cube) and reverse (5.7-cm die and 1.6-cm Rubik's cube) sizes and shown at two distances (25 cm versus 91 cm) in isolation. Small near and large far objects subtended equal retinal angles. Participants provided manual estimates of perceived size and distance. For every combination of size and distance, Rubik's cubes were perceived as larger and farther than the dice, even during binocular viewing at near distances (<1 meter), when oculomotor cues are particularly strong. For size perception but not distance perception, the familiar size effect was significantly stronger under monocular pinhole viewing than binocular viewing. These results suggest that (1) familiar size affects the accuracy of perception, not just the speed; (2) the effect occurs even when oculomotor cues are available; and (3) size and distance perception are not perfectly yoked.


Assuntos
Percepção de Distância , Visão Binocular , Acomodação Ocular , Sinais (Psicologia) , Percepção de Profundidade , Movimentos Oculares , Humanos , Percepção de Tamanho
6.
Neuroimage ; 218: 116981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454207

RESUMO

Recent evidence points to a role of the primary visual cortex that goes beyond visual processing into high-level cognitive and motor-related functions, including action planning, even in absence of feedforward visual information. It has been proposed that, at the neural level, motor imagery is a simulation based on motor representations, and neuroimaging studies have shown overlapping and shared activity patterns for motor imagery and action execution in frontal and parietal cortices. Yet, the role of the early visual cortex in motor imagery remains unclear. Here we used multivoxel pattern analyses on functional magnetic resonance imaging (fMRI) data to examine whether the content of motor imagery and action intention can be reliably decoded from the activity patterns in the retinotopic location of the target object in the early visual cortex. Further, we investigated whether the discrimination between specific actions generalizes across imagined and intended movements. Eighteen right-handed human participants (11 females) imagined or performed delayed hand actions towards a centrally located object composed of a small shape attached on a large shape. Actions consisted of grasping the large or small shape, and reaching to the center of the object. We found that despite comparable fMRI signal amplitude for different planned and imagined movements, activity patterns in the early visual cortex, as well as dorsal premotor and anterior intraparietal cortex, accurately represented action plans and action imagery. However, movement content is similar irrespective of whether actions are actively planned or covertly imagined in parietal but not early visual or premotor cortex, suggesting a generalized motor representation only in regions that are highly specialized in object directed grasping actions and movement goals. In sum, action planning and imagery have overlapping but non identical neural mechanisms in the cortical action network.


Assuntos
Imaginação/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
7.
Cereb Cortex ; 29(11): 4662-4678, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30668674

RESUMO

The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.


Assuntos
Intenção , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/fisiologia , Vias Visuais/fisiologia , Adulto Jovem
8.
J Exp Child Psychol ; 195: 104848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278115

RESUMO

The current study aimed to examine the age at which infants exhibit knowledge of the familiar size of common everyday objects. A total of 65 7- and 12-month-old infants were presented with familiar-sized and novel-sized (i.e., larger or smaller than the familiar size) common everyday objects (i.e., pacifiers and sippy cups), which were placed out of their reach. Both 7- and 12-month-olds' first looks were more frequently directed toward physically larger objects irrespective of whether they were familiar- or novel-sized objects. This finding indicates that initial visual orientation is contingent on the magnitude of the absolute physical size of an object. However, when the entire duration of presentation of the objects (i.e., 10 s) was examined, 12-month-olds' mean looking durations were found to be longer for novel-sized objects than for familiar-sized objects. Thus, although infants in both age groups were able to discern the physical sizes of objects, only 12-month-olds could successfully discriminate between the familiar and novel sizes of everyday objects. Notably, 12-month-olds demonstrated knowledge of familiar size even though the test objects were out of their reach and, consequently, unamenable to manual exploration.


Assuntos
Reconhecimento Psicológico , Fatores Etários , Feminino , Humanos , Lactente , Conhecimento , Masculino , Orientação , Percepção de Tamanho
9.
Brain ; 141(5): 1422-1433, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534154

RESUMO

The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.


Assuntos
Amputados/reabilitação , Membros Artificiais , Córtex Cerebral/diagnóstico por imagem , Retroalimentação Sensorial/fisiologia , Mãos , Adulto , Amputados/psicologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor/fisiologia
10.
Cereb Cortex ; 28(4): 1117-1131, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334063

RESUMO

Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.


Assuntos
Encéfalo/fisiologia , Lateralidade Funcional/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Vias Visuais/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Oxigênio/sangue , Estimulação Luminosa , Vias Visuais/diagnóstico por imagem , Adulto Jovem
11.
J Exp Child Psychol ; 179: 56-72, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30476695

RESUMO

Vision for action and vision for perception both rely on shape representations derived within the visual system. Whether the same psychological and neural mechanisms underlie both forms of behavior remains hotly contested, and whether this arrangement is equivalent in adults and children is controversial as well. To address these outstanding questions, we used an established psychophysical heuristic, Weber's law, which, in adults, has typically been observed for perceptual judgment tasks but not for actions such as grasping. We examined whether this perception-action dissociation in Weber's law was present in childhood as it is in adulthood and whether it was modulated by stimulus complexity. Two major results emerged. First, although adults evinced visuomotor behavior that violated Weber's law, young children (4.5-6.5 years) adhered to Weber's law when they grasped complex objects ("Efron" blocks), which varied along both the graspable and non-graspable dimensions to maintain a constant surface area, but not when they grasped simple objects, which varied only along the graspable dimension. Second, adherence to Weber's law was found across all ages in the context of a perceptual task. Together, these findings suggest that, in early childhood, visuomotor representations are modulated by perceptual representations, particularly when a refined description of object shape is needed.


Assuntos
Julgamento/fisiologia , Desempenho Psicomotor/fisiologia , Percepção de Tamanho/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Limiar Diferencial , Feminino , Humanos , Masculino , Adulto Jovem
12.
J Neurosci ; 37(48): 11572-11591, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29066555

RESUMO

The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay.SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it.


Assuntos
Sensibilidades de Contraste/fisiologia , Escuridão , Fóvea Central/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção do Tato/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Tato/fisiologia , Adulto Jovem
13.
J Neurosci ; 36(29): 7648-62, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445143

RESUMO

UNLABELLED: The properties of objects, such as shape, influence the way we grasp them. To quantify the role of different brain regions during grasping, it is necessary to disentangle the processing of visual dimensions related to object properties from the motor aspects related to the specific hand configuration. We orthogonally varied object properties (shape, size, and elongation) and task (passive viewing, precision grip with two or five digits, or coarse grip with five digits) and used representational similarity analysis of functional magnetic resonance imaging data to infer the representation of object properties and hand configuration in the human brain. We found that object elongation is the most strongly represented object feature during grasping and is coded preferentially in the primary visual cortex as well as the anterior and posterior superior-parieto-occipital cortex. By contrast, primary somatosensory, motor, and ventral premotor cortices coded preferentially the number of digits while ventral-stream and dorsal-stream regions coded a mix of visual and motor dimensions. The representation of object features varied with task modality, as object elongation was less relevant during passive viewing than grasping. To summarize, this study shows that elongation is a particularly relevant property of the object to grasp, which along with the number of digits used, is represented within both ventral-stream and parietal regions, suggesting that communication between the two streams about these specific visual and motor dimensions might be relevant to the execution of efficient grasping actions. SIGNIFICANCE STATEMENT: To grasp something, the visual properties of an object guide preshaping of the hand into the appropriate configuration. Different grips can be used, and different objects require different hand configurations. However, in natural actions, grip and object type are often confounded, and the few experiments that have attempted to separate them have produced conflicting results. As such, it is unclear how visual and motor properties are represented across brain regions during grasping. Here we orthogonally manipulated object properties and grip, and revealed the visual dimension (object elongation) and the motor dimension (number of digits) that are more strongly coded in ventral and dorsal streams. These results suggest that both streams play a role in the visuomotor coding essential for grasping.


Assuntos
Encéfalo/fisiologia , Força da Mão/fisiologia , Desempenho Psicomotor/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Oxigênio , Adulto Jovem
14.
J Neurosci ; 35(40): 13745-60, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446226

RESUMO

The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.'s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. SIGNIFICANCE STATEMENT: The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.'s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lobo Occipital/patologia , Reconhecimento Visual de Modelos/fisiologia , Tato , Percepção Visual/fisiologia , Adulto , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Occipital/irrigação sanguínea , Oxigênio/sangue , Psicofísica , Fatores de Tempo
15.
Exp Brain Res ; 234(4): 963-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26686378

RESUMO

Humans are faster to grasp an object such as a tool if they have previewed the same object beforehand. This priming effect is strongest when actors gesture the use of the tool rather than simply move it, possibly because the previewed tool activates action-specific routines in dorsal-stream motor networks. Here, we examined whether real tools, which observers could physically act upon, serve as more potent primes than two-dimensional images of tools, which do not afford physical action. Participants were presented with a prime stimulus that could be either a real tool or a visually matched photograph of a tool. After a brief delay, participants interacted with a real tool target, either by 'grasping to move,' or 'grasping to use' it. The identities of the prime and target tools were either the same (congruent trials; e.g., spatula-spatula) or different (incongruent trials; e.g., whisk-spatula). As expected, participants were faster to initiate grasps during trials when they had to move the tool rather than gesture its use. Priming effects were observed for grasp-to-use, but not grasp-to-move, responses. Surprisingly, however, both pictures of tools and real tools primed action responses equally. Our results indicate that tool priming effects are driven by pictorial cues and their implied actions, even in the absence of volumetric cues that reflect the tangibility and affordances of the prime.


Assuntos
Força da Mão/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Percepção Visual/fisiologia , Adulto Jovem
16.
Neuroimage ; 116: 10-29, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25970649

RESUMO

Based on its diverse and wide-spread patterns of connectivity, primate posteromedial cortex (PMC) is well positioned to support roles in several aspects of sensory-, cognitive- and motor-related processing. Previous work in both humans and non-human primates (NHPs) using resting-state functional MRI (rs-fMRI) suggests that a subregion of PMC, the medial parieto-occipital cortex (mPOC), by virtue of its intrinsic functional connectivity (FC) with visual cortex, may only play a role in higher-order visual processing. Recent neuroanatomical tracer studies in NHPs, however, demonstrate that mPOC also has prominent cortico-cortical connections with several frontoparietal structures involved in movement planning and control, a finding consistent with increasing observations of reach- and grasp-related activity in the mPOC of both NHPs and humans. To reconcile these observations, here we used rs-fMRI data collected from both awake humans and anesthetized macaque monkeys to more closely examine and compare parcellations of mPOC across species and explore the FC patterns associated with these subdivisions. Seed-based and voxel-wise hierarchical cluster analyses revealed four broad spatially separated functional boundaries that correspond with graded differences in whole-brain FC patterns in each species. The patterns of FC observed are consistent with mPOC forming a critical hub of networks involved in action planning and control, spatial navigation, and working memory. In addition, our comparison between species indicates that while there are several similarities, there may be some species-specific differences in functional neural organization. These findings and the associated theoretical implications are discussed.


Assuntos
Lobo Occipital/anatomia & histologia , Lobo Occipital/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Adulto , Animais , Mapeamento Encefálico/métodos , Análise por Conglomerados , Feminino , Humanos , Macaca fascicularis , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Especificidade da Espécie , Adulto Jovem
17.
Eur J Neurosci ; 41(4): 454-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25400211

RESUMO

The visuo-motor channel hypothesis (Jeannerod, 1981) postulates that grasping movements consist of a grip and a transport component differing in their reliance on intrinsic vs. extrinsic object properties (e.g. size vs. location, respectively). While recent neuroimaging studies have revealed separate brain areas implicated in grip and transport components within the parietal lobe, less is known about the neural processing of extrinsic and intrinsic properties of objects for grasping actions. We used functional magnetic resonance imaging adaptation to examine the cortical areas involved in processing object size, object location or both. Participants grasped (using the dominant right hand) or passively viewed sequential pairs of objects that could differ in size, location or both. We hypothesized that if intrinsic and extrinsic object properties are processed separately, as suggested by the visuo-motor channel hypothesis, we would observe adaptation to object size in areas that code the grip and adaptation to location in areas that code the transport component. On the other hand, if intrinsic and extrinsic object properties are not processed separately, brain areas involved in grasping may show adaptation to both object size and location. We found adaptation to object size for grasping movements in the left anterior intraparietal sulcus (aIPS), in agreement with the idea that object size is processed separately from location. In addition, the left superior parietal occipital sulcus (SPOC), primary somatosensory and motor area (S1/M1), precuneus, dorsal premotor cortex (PMd), and supplementary motor area (SMA) showed non-additive adaptation to both object size and location. We propose different roles for the aIPS as compared with the SPOC, S1/M1, precuneus, PMd and SMA. In particular, while the aIPS codes intrinsic object properties, which are relevant for hand preshaping and force scaling, area SPOC, S1/M1, precuneus, PMd and SMA code intrinsic as well as extrinsic object properties, both of which are relevant for digit positioning during grasping.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Mãos/fisiologia , Movimento , Desempenho Psicomotor , Percepção Visual , Adaptação Fisiológica , Adulto , Feminino , Mãos/inervação , Força da Mão , Humanos , Imageamento por Ressonância Magnética , Masculino
19.
J Neurosci ; 33(5): 1991-2008, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365237

RESUMO

Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.


Assuntos
Lobo Frontal/fisiologia , Intenção , Movimento/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Força da Mão/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino
20.
Neuroimage ; 96: 216-36, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24699018

RESUMO

Primate occipitotemporal cortex (OTC) is composed of a mosaic of highly specialized brain regions each involved in the high-level visual analysis and recognition of particular stimulus categories (e.g., objects, faces, scenes, bodies and tools). Whereas theories attempting to account for this modular organization of category-selective responses in OTC have largely focused on visually driven, bottom-up inputs to OTC (e.g., dimensions related to the visual structure of the world and how it is experienced), other proposals have instead focused on the connectivity of OTC's outputs, emphasizing how the information processed by different OTC regions might be used by the rest of the brain. The latter proposals underscore the importance of interpreting the activity (and selectivity) of individual OTC areas within the greater context of the widely distributed network of areas in which they are embedded and that use OTC information to support behavior. Here, using resting-state fMRI, we investigated the functional connectivity (FC) patterns of OTC regions associated with object-, face-, scene-, body- and tool-related processing defined from task-based localizers acquired in the same cohort of participants. We observed notable differences in the whole-brain FC patterns, not only across OTC regions, but even between areas thought to form part of the same category-selective network. Furthermore, we found that the neuroanatomical location of OTC regions (e.g., adjacency) had little, if any, bearing on the FC networks observed. FC between certain OTC areas and other regions traditionally implicated in sensory-, motor-, affective- and/or cognitive-related processing and the associated theoretical implications is discussed.


Assuntos
Conectoma/métodos , Percepção de Forma/fisiologia , Lobo Occipital/anatomia & histologia , Lobo Occipital/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA