Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 25(12): 1391-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25123785

RESUMO

INTRODUCTION: New generation open-irrigated catheters aim to improve irrigation efficiency. This may change lesion patterns, challenging operators. Indeed, safety issues have recently arisen. We aimed to experimentally assess 4 open-irrigated catheters, comparing lesion size, safety, and heat transfer. METHODS: The thigh lesion model was employed in 6 anesthetized pigs to assess the morphology of perpendicular and tangential lesions (n = 140) created by the newer catheters ThermoCool® SF, CoolFlex™, and Blazer™ Open-Irrigated, and the standard ThermoCool®, at a constant power of 30 W (60 seconds). To evaluate the propensity for deep-tissue overheating, a set of 120 applications were performed at 50 W (180 seconds) comparing pop rates. Thermal assessment of the lesion generation process (20 W, 60 seconds, n = 32) was performed with an infrared camera on bovine ventricular tissue. RESULTS: At 30 W, the newer catheters showed lower temperature readings compared with the ThermoCool®. No major efficacy or safety differences were found at tangential applications; however, at perpendicular applications: (1) the SF at 17 mL/min better preserved the superficial layers and focused its maximum thermal effect deeper, but at recommended flow rates (8 mL/min) it generated the largest superficial lesions; (2) CoolFlex™ created smaller lesions than SF and readily induced steam pops at 50 W without temperature control; and (3) no major differences were found comparing Blazer™ Open-Irrigated and ThermoCool®. CONCLUSIONS: The lower temperature readings in the newer catheters make them more prone to deliver the maximum programmed power. Under experimental conditions, the SF catheter focuses its maximum effect deeper and the CoolFlex™ can be more prone to induce steam pops at high power settings.


Assuntos
Temperatura Corporal/fisiologia , Cateteres Cardíacos , Procedimentos Cirúrgicos Cardíacos/instrumentação , Ablação por Cateter/instrumentação , Coração/fisiologia , Irrigação Terapêutica/instrumentação , Animais , Procedimentos Cirúrgicos Cardíacos/métodos , Ablação por Cateter/métodos , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Suínos , Irrigação Terapêutica/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA