Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(6): 979-981, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575676

RESUMO

Humans with inherited heterozygous BRCA2 mutations have an increased risk of developing cancer; however, what triggers carcinogenesis in these individuals is unclear. Tan et al. find that environmental and metabolic aldehydes pose a threat to these individuals by promoting degradation of wild-type BRCA2 protein, thereby predisposing them to genomic instability and perhaps to cancer.


Assuntos
Aldeídos , Mutação , Proteína BRCA2/genética , Neoplasias da Mama/genética , Genes BRCA1 , Instabilidade Genômica , Mutação em Linhagem Germinativa , Heterozigoto , Humanos
2.
Cell ; 168(5): 856-866.e12, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28215707

RESUMO

HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases.


Assuntos
Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Proteínas de Choque Térmico HSP90/genética , Dobramento de Proteína , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mutação de Sentido Incorreto , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico , Gêmeos Monozigóticos
3.
Mol Cell ; 83(20): 3590-3592, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37863027

RESUMO

In this issue of Molecular Cell, Brunner et al.1 reveal that eliminating FANCD2 from stalled forks via FBXL12-mediated degradation enables cells to tolerate oncogene-induced replication stress, making FBXL12 a promising target for cancer treatment.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/metabolismo
4.
Mol Cell ; 81(21): 4440-4456.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34597596

RESUMO

Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.


Assuntos
Proteína BRCA2/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Exodesoxirribonucleases/metabolismo , Fatores de Transcrição/química , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Ácido Mevalônico , Camundongos , Complexos Multiproteicos , Mutação , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Recombinação Genética
5.
Nat Rev Mol Cell Biol ; 17(6): 337-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27145721

RESUMO

The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.


Assuntos
Reparo do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Anemia de Fanconi/genética , Animais , Dano ao DNA , Replicação do DNA , Humanos
6.
Cell ; 152(6): 1344-54, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23498941

RESUMO

DNA double-strand breaks (DSBs) can arise from multiple sources, including exposure to ionizing radiation. The repair of DSBs involves both posttranslational modification of nucleosomes and concentration of DNA-repair proteins at the site of damage. Consequently, nucleosome packing and chromatin architecture surrounding the DSB may limit the ability of the DNA-damage response to access and repair the break. Here, we review early chromatin-based events that promote the formation of open, relaxed chromatin structures at DSBs and that allow the DNA-repair machinery to access the spatially confined region surrounding the DSB, thereby facilitating mammalian DSB repair.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Instabilidade Genômica , Histonas/metabolismo , Humanos , Neoplasias/genética
7.
Mol Cell ; 78(6): 1070-1085, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459988

RESUMO

Anti-cancer drugs targeting the DNA damage response (DDR) exploit genetic or functional defects in this pathway through synthetic lethal mechanisms. For example, defects in homologous recombination (HR) repair arise in cancer cells through inherited or acquired mutations in BRCA1, BRCA2, or other genes in the Fanconi anemia/BRCA pathway, and these tumors have been shown to be particularly sensitive to inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP). Recent work has identified additional genomic and functional assays of DNA repair that provide new predictive and pharmacodynamic biomarkers for these targeted therapies. Here, we examine the development of selective agents targeting DNA repair, including PARP inhibitors; inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM); and inhibitors of classical non-homologous end joining (cNHEJ) and alternative end joining (Alt EJ). We also review the biomarkers that guide the use of these agents and current clinical trials with these therapies.


Assuntos
Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Farmacológicos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA/genética , Genes BRCA1/efeitos dos fármacos , Recombinação Homóloga , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo
8.
Mol Cell ; 80(3): 410-422.e6, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108758

RESUMO

While effective anti-cancer drugs targeting the CHK1 kinase are advancing in the clinic, drug resistance is rapidly emerging. Here, we demonstrate that CRISPR-mediated knockout of the little-known gene FAM122A/PABIR1 confers cellular resistance to CHK1 inhibitors (CHK1is) and cross-resistance to ATR inhibitors. Knockout of FAM122A results in activation of PP2A-B55α, a phosphatase that dephosphorylates the WEE1 protein and rescues WEE1 from ubiquitin-mediated degradation. The resulting increase in WEE1 protein expression reduces replication stress, activates the G2/M checkpoint, and confers cellular resistance to CHK1is. Interestingly, in tumor cells with oncogene-driven replication stress, CHK1 can directly phosphorylate FAM122A, leading to activation of the PP2A-B55α phosphatase and increased WEE1 expression. A combination of a CHK1i plus a WEE1 inhibitor can overcome CHK1i resistance of these tumor cells, thereby enhancing anti-cancer activity. The FAM122A expression level in a tumor cell can serve as a useful biomarker for predicting CHK1i sensitivity or resistance.


Assuntos
Quinase 1 do Ponto de Checagem/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Pirazinas/farmacologia , Pirazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/fisiologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Pirazinas/metabolismo , Pirazóis/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Mol Cell ; 73(5): 885-899.e6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686591

RESUMO

BRCA1 or BRCA2 inactivation drives breast and ovarian cancer but also creates vulnerability to poly(ADP-ribose) polymerase (PARP) inhibitors. To search for additional targets whose inhibition is synthetically lethal in BRCA2-deficient backgrounds, we screened two pairs of BRCA2 isogenic cell lines with DNA-repair-focused small hairpin RNA (shRNA) and CRISPR (clustered regularly interspaced short palindromic repeats)-based libraries. We found that BRCA2-deficient cells are selectively dependent on multiple pathways including base excision repair, ATR signaling, and splicing. We identified APEX2 and FEN1 as synthetic lethal genes with both BRCA1 and BRCA2 loss of function. BRCA2-deficient cells require the apurinic endonuclease activity and the PCNA-binding domain of Ape2 (APEX2), but not Ape1 (APEX1). Furthermore, BRCA2-deficient cells require the 5' flap endonuclease but not the 5'-3' exonuclease activity of Fen1, and chemically inhibiting Fen1 selectively targets BRCA-deficient cells. Finally, we developed a microhomology-mediated end-joining (MMEJ) reporter and showed that Fen1 participates in MMEJ, underscoring the importance of MMEJ as a collateral repair pathway in the context of homologous recombination (HR) deficiency.


Assuntos
Proteína BRCA2/genética , Sistemas CRISPR-Cas , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases Flap/genética , Genes Letais , Neoplasias/genética , Interferência de RNA , Mutações Sintéticas Letais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Morte Celular , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases , Endonucleases Flap/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Enzimas Multifuncionais , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética
10.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30344097

RESUMO

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Replicação do DNA/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteína BRCA1 , Proteína BRCA2 , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA , Desoxirribonucleases , Endodesoxirribonucleases , Instabilidade Genômica/fisiologia , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Ligação Proteica
11.
Mol Cell ; 72(6): 925-941.e4, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576655

RESUMO

BRCA1-deficient tumor cells have defects in homologous-recombination repair and replication fork stability, resulting in PARP inhibitor sensitivity. Here, we demonstrate that a deubiquitinase, USP1, is upregulated in tumors with mutations in BRCA1. Knockdown or inhibition of USP1 resulted in replication fork destabilization and decreased viability of BRCA1-deficient cells, revealing a synthetic lethal relationship. USP1 binds to and is stimulated by fork DNA. A truncated form of USP1, lacking its DNA-binding region, was not stimulated by DNA and failed to localize and protect replication forks. Persistence of monoubiquitinated PCNA at the replication fork was the mechanism of cell death in the absence of USP1. Taken together, USP1 exhibits DNA-mediated activation at the replication fork, protects the fork, and promotes survival in BRCA1-deficient cells. Inhibition of USP1 may be a useful treatment for a subset of PARP-inhibitor-resistant BRCA1-deficient tumors with acquired replication fork stabilization.


Assuntos
Proteína BRCA1/deficiência , Neoplasias da Mama/enzimologia , Replicação do DNA , DNA de Neoplasias/biossíntese , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias do Colo do Útero/enzimologia , Animais , Proteína BRCA1/genética , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Sobrevivência Celular , DNA de Neoplasias/genética , Resistência a Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos Nus , Mutação , Desnaturação de Ácido Nucleico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nature ; 568(7753): 551-556, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971823

RESUMO

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Assuntos
Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/genética , Mutações Sintéticas Letais/genética , Helicase da Síndrome de Werner/genética , Apoptose/genética , Sistemas CRISPR-Cas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Genéticos , Neoplasias/patologia , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/deficiência
13.
Nucleic Acids Res ; 51(18): 9920-9937, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37665033

RESUMO

Polymerase theta (Polθ) acts in DNA replication and repair, and its inhibition is synthetic lethal in BRCA1 and BRCA2-deficient tumor cells. Novobiocin (NVB) is a first-in-class inhibitor of the Polθ ATPase activity, and it is currently being tested in clinical trials as an anti-cancer drug. Here, we investigated the molecular mechanism of NVB-mediated Polθ inhibition. Using hydrogen deuterium exchange-mass spectrometry (HX-MS), biophysical, biochemical, computational and cellular assays, we found NVB is a non-competitive inhibitor of ATP hydrolysis. NVB sugar group deletion resulted in decreased potency and reduced HX-MS interactions, supporting a specific NVB binding orientation. Collective results revealed that NVB binds to an allosteric site to block DNA binding, both in vitro and in cells. Comparisons of The Cancer Genome Atlas (TCGA) tumors and matched controls implied that POLQ upregulation in tumors stems from its role in replication stress responses to increased cell proliferation: this can now be tested in fifteen tumor types by NVB blocking ssDNA-stimulation of ATPase activity, required for Polθ function at replication forks and DNA damage sites. Structural and functional insights provided in this study suggest a path for developing NVB derivatives with improved potency for Polθ inhibition by targeting ssDNA binding with entropically constrained small molecules.


Assuntos
Adenosina Trifosfatases , DNA Polimerase teta , Neoplasias , Novobiocina , Humanos , Adenosina Trifosfatases/metabolismo , Replicação do DNA , DNA de Cadeia Simples , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Novobiocina/farmacologia
14.
Proc Natl Acad Sci U S A ; 119(49): e2214935119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442094

RESUMO

The 53BP1-RIF1 pathway restricts the resection of DNA double-strand breaks (DSBs) and promotes blunt end-ligation by non-homologous end joining (NHEJ) repair. The Shieldin complex is a downstream effector of the 53BP1-RIF1 pathway. Here, we identify a component of this pathway, CCAR2/DBC1, which is also required for restriction of DNA end-resection. CCAR2 co-immunoprecipitates with the Shieldin complex, and knockout of CCAR2 in a BRCA1-deficient cell line results in elevated DSB end-resection, RAD51 loading, and PARP inhibitor (PARPi) resistance. Knockout of CCAR2 is epistatic with knockout of other Shieldin proteins. The S1-like RNA-binding domain of CCAR2 is required for its interaction with the Shieldin complex and for suppression of DSB end-resection. CCAR2 functions downstream of the Shieldin complex, and CCAR2 knockout cells have delayed resolution of Shieldin complex foci. Forkhead-associated (FHA)-dependent targeting of CCAR2 to DSB sites re-sensitized BRCA1-/-SHLD2-/- cells to PARPi. Taken together, CCAR2 is a functional component of the 53BP1-RIF1 pathway, promotes the refill of resected DSBs, and suppresses homologous recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , DNA
15.
PLoS Genet ; 18(11): e1010459, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441774

RESUMO

Overexpression of the TGFß pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFß promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFß signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFß pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFß and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFß-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFß-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFß-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.


Assuntos
Anemia de Fanconi , Camundongos , Animais , Anemia de Fanconi/genética , Fator de Crescimento Transformador beta/genética
16.
Cell ; 139(7): 1222-4, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064367

RESUMO

Left unrepaired, DNA interstrand crosslinks represent impassable hurdles for DNA replication, and their removal is a complicated stepwise process involving a variety of enzymes. In a recent paper in Science, Knipscheer et al. (2009) demonstrate that the Fanconi Anemia protein FANCD2 promotes multiple steps of the crosslink repair process.


Assuntos
Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Animais , Humanos
17.
Nature ; 563(7732): 522-526, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464262

RESUMO

Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.


Assuntos
Proteína BRCA1/deficiência , Dineínas do Citoplasma/metabolismo , DNA/metabolismo , Genes BRCA1 , Proteína Homóloga a MRE11/metabolismo , Reparo de DNA por Recombinação , Proteína BRCA1/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Edição de Genes , Instabilidade Genômica/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Reparo de DNA por Recombinação/efeitos dos fármacos , Fatores de Transcrição/metabolismo
18.
Mol Cell ; 63(2): 249-260, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27373336

RESUMO

Ubiquitin-specific proteases (USPs) constitute the largest family of deubiquitinating enzymes, whose catalytic competency is often modulated by their binding partners through unknown mechanisms. Here we report on a series of crystallographic and biochemical analyses of an evolutionarily conserved deubiquitinase, USP12, which is activated by two ß-propeller proteins, UAF1 and WDR20. Our structures reveal that UAF1 and WDR20 interact with USP12 at two distinct sites far from its catalytic center. Without increasing the substrate affinity of USP12, the two ß-propeller proteins potentiate the enzyme through different allosteric mechanisms. UAF1 docks at the distal end of the USP12 Fingers domain and induces a cascade of structural changes that reach a critical ubiquitin-contacting loop adjacent to the catalytic cleft. By contrast, WDR20 anchors at the base of this loop and remotely modulates the catalytic center of the enzyme. Our results provide a mechanistic example for allosteric activation of USPs by their regulatory partners.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterase/metabolismo , Regulação Alostérica , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cumarínicos/metabolismo , Células HEK293 , Humanos , Hidrólise , Cinética , Modelos Moleculares , Complexos Multiproteicos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Transfecção , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Ubiquitinação , Ubiquitinas/metabolismo
19.
Cancer Treat Res ; 186: 285-298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37978141

RESUMO

Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias , Humanos , DNA Polimerase Dirigida por DNA/genética , Quebras de DNA de Cadeia Dupla , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
Cell ; 133(5): 864-77, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510930

RESUMO

Evasion of DNA damage-induced cell death, via mutation of the p53 tumor suppressor or overexpression of prosurvival Bcl-2 family proteins, is a key step toward malignant transformation and therapeutic resistance. We report that depletion or acute inhibition of checkpoint kinase 1 (Chk1) is sufficient to restore gamma-radiation-induced apoptosis in p53 mutant zebrafish embryos. Surprisingly, caspase-3 is not activated prior to DNA fragmentation, in contrast to classical intrinsic or extrinsic apoptosis. Rather, an alternative apoptotic program is engaged that cell autonomously requires atm (ataxia telangiectasia mutated), atr (ATM and Rad3-related) and caspase-2, and is not affected by p53 loss or overexpression of bcl-2/xl. Similarly, Chk1 inhibitor-treated human tumor cells hyperactivate ATM, ATR, and caspase-2 after gamma-radiation and trigger a caspase-2-dependent apoptotic program that bypasses p53 deficiency and excess Bcl-2. The evolutionarily conserved "Chk1-suppressed" pathway defines a novel apoptotic process, whose responsiveness to Chk1 inhibitors and insensitivity to p53 and BCL2 alterations have important implications for cancer therapy.


Assuntos
Apoptose , Caspase 2/metabolismo , Dano ao DNA , Proteínas Quinases/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos da radiação , Inibidores Enzimáticos/farmacologia , Raios gama , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA