Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Metab Eng ; 72: 200-214, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341982

RESUMO

The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms.


Assuntos
Dióxido de Carbono , Escherichia coli , Biocatálise , Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Formiatos/metabolismo , Glicina/metabolismo
2.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363966

RESUMO

Increasing the resistance of plant-fermenting bacteria to lignocellulosic inhibitors is useful to understand microbial adaptation and to develop candidate strains for consolidated bioprocessing. Here, we study and improve inhibitor resistance in Clostridium phytofermentans (also called Lachnoclostridium phytofermentans), a model anaerobe that ferments lignocellulosic biomass. We survey the resistance of this bacterium to a panel of biomass inhibitors and then evolve strains that grow in increasing concentrations of the lignin phenolic, ferulic acid, by automated, long-term growth selection in an anaerobic GM3 automat. Ultimately, strains resist multiple inhibitors and grow robustly at the solubility limit of ferulate while retaining the ability to ferment cellulose. We analyze genome-wide transcription patterns during ferulate stress and genomic variants that arose along the ferulate growth selection, revealing how cells adapt to inhibitors through changes in gene dosage and regulation, membrane fatty acid structure, and the surface layer. Collectively, this study demonstrates an automated framework for in vivo directed evolution of anaerobes and gives insight into the genetic mechanisms by which bacteria survive exposure to chemical inhibitors.IMPORTANCE Fermentation of plant biomass is a key part of carbon cycling in diverse ecosystems. Further, industrial biomass fermentation may provide a renewable alternative to fossil fuels. Plants are primarily composed of lignocellulose, a matrix of polysaccharides and polyphenolic lignin. Thus, when microorganisms degrade lignocellulose to access sugars, they also release phenolic and acidic inhibitors. Here, we study how the plant-fermenting bacterium Clostridium phytofermentans resists plant inhibitors using the lignin phenolic, ferulic acid. We examine how the cell responds to abrupt ferulate stress by measuring changes in gene expression. We evolve increasingly resistant strains by automated, long-term cultivation at progressively higher ferulate concentrations and sequence their genomes to identify mutations associated with acquired ferulate resistance. Our study develops an inhibitor-resistant bacterium that ferments cellulose and provides insights into genomic evolution to resist chemical inhibitors.


Assuntos
Clostridium/metabolismo , Lignina/metabolismo , Fenol/metabolismo , Plantas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Evolução Biológica , Biomassa , Celulose/metabolismo , Clostridium/genética , Clostridium/crescimento & desenvolvimento , Fermentação
3.
J Cell Sci ; 124(Pt 22): 3871-83, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100916

RESUMO

Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.


Assuntos
Ciclo Celular , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Linhagem Celular , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Humanos , Ligação Proteica
4.
Biodes Res ; 2022: 9859643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850128

RESUMO

All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the "serine shunt" which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.

5.
Adv Mater ; 33(9): e2006499, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33496360

RESUMO

Major ampullate (MA) spider silk has fascinating mechanical properties combining strength and elasticity. All known natural MA silks contain at least two or more different spidroins; however, it is unknown why and if there is any interplay in the spinning dope. Here, two different spidroins from Araneus diadematus are co-produced in Escherichia coli to study the possible dimerization and effects thereof on the mechanical properties of fibers. During the production of the two spidroins, a mixture of homo- and heterodimers is formed triggered by the carboxyl-terminal domains. Interestingly, homodimeric species of the individual spidroins self-assemble differently in comparison to heterodimers, and stoichiometric mixtures of homo- and heterodimers yield spidroin networks upon assembly with huge impact on fiber mechanics upon spinning. The obtained results provide the basis for man-made tuning of spinning dopes to yield high-performance fibers.

6.
mBio ; 12(4): e0032921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399608

RESUMO

The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries. IMPORTANCE In the cell, NAD(H) and NADP(H) cofactors have different functions. The former mainly accepts electrons from catabolic reactions and carries them to respiration, while the latter provides reducing power for anabolism. Correspondingly, the ratio of the reduced to the oxidized form differs for NAD+ (low) and NADP+ (high), reflecting their distinct roles. We challenged the flexibility of E. coli's central metabolism in multiple adaptive evolution experiments using an NADPH-auxotrophic strain. We found several mutations in two enzymes, changing the cofactor preference of malic enzyme and dihydrolipoamide dehydrogenase. Upon deletion of their corresponding genes we performed additional evolution experiments which did not lead to the emergence of any additional mutants. We attribute this restricted number of mutational targets to intrinsic thermodynamic barriers; the high ratio of NADPH to NADP+ limits metabolic redox reactions that can regenerate NADPH, mainly by mass action constraints.


Assuntos
Coenzimas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Evolução Molecular , NADP/metabolismo , Oxirredutases/metabolismo , Carbono/metabolismo , Coenzimas/genética , Escherichia coli/genética , Proteínas de Escherichia coli , Cinética , Malato Desidrogenase/metabolismo , NAD/metabolismo , Oxirredutases/genética
7.
Mol Syst Biol ; 4: 174, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18319726

RESUMO

We have constructed a collection of single-gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2-3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches.


Assuntos
Acinetobacter/genética , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Deleção de Genes , Mutação , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/fisiologia , Carbono/metabolismo , Mapeamento Cromossômico , Meios de Cultura , Primers do DNA/química , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Modelos Genéticos , Biologia de Sistemas
8.
Front Microbiol ; 10: 1313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281294

RESUMO

The bio-economy relies on microbial strains optimized for efficient large scale production of chemicals and fuels from inexpensive and renewable feedstocks under industrial conditions. The reduced one carbon compound methanol, whose production does not involve carbohydrates needed for the feed and food sector, can be used as sole carbon and energy source by methylotrophic bacteria like Methylobacterium extorquens AM1. This strain has already been engineered to produce various commodity and high value chemicals from methanol. The toxic effect of methanol limits its concentration as feedstock to 1% v/v. We obtained M. extorquens chassis strains tolerant to high methanol via adaptive directed evolution using the GM3 technology of automated continuous culture. Turbidostat and conditional medium swap regimes were employed for the parallel evolution of the recently characterized strain TK 0001 and the reference strain AM1 and enabled the isolation of derivatives of both strains capable of stable growth with 10% methanol. The isolates produced more biomass at 1% methanol than the ancestor strains. Genome sequencing identified the gene metY coding for an O-acetyl-L-homoserine sulfhydrylase as common target of mutation. We showed that the wildtype enzyme uses methanol as substrate at elevated concentrations. This side reaction produces methoxine, a toxic homolog of methionine incorporated in polypeptides during translation. All mutated metY alleles isolated from the evolved populations coded for inactive enzymes, designating O-acetyl-L-homoserine sulfhydrylase as a major vector of methanol toxicity. A whole cell transcriptomic analysis revealed that genes coding for chaperones and proteases were upregulated in the evolved cells as compared with the wildtype, suggesting that the cells had to cope with aberrant proteins formed during the adaptation to increasing methanol exposure. In addition, the expression of ribosomal proteins and enzymes related to energy production from methanol like formate dehydrogenases and ATP synthases was boosted in the evolved cells upon a short-term methanol stress. D-lactate production from methanol by adapted cells overexpressing the native D-lactate dehydrogenase was quantified. A significant higher lactate yield was obtained compared with control cells, indicating an enhanced capacity of the cells resistant to high methanol to assimilate this one carbon feedstock more efficiently.

9.
ACS Synth Biol ; 7(9): 2023-2028, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29763299

RESUMO

Assimilation of one-carbon compounds presents a key biochemical challenge that limits their use as sustainable feedstocks for microbial growth and production. The reductive glycine pathway is a synthetic metabolic route that could provide an optimal way for the aerobic assimilation of reduced C1 compounds. Here, we show that a rational integration of native and foreign enzymes enables the tetrahydrofolate and glycine cleavage/synthase systems to operate in the reductive direction, such that Escherichia coli satisfies all of its glycine and serine requirements from the assimilation of formate and CO2. Importantly, the biosynthesis of serine from formate and CO2 does not lower the growth rate, indicating high flux that is able to provide 10% of cellular carbon. Our findings assert that the reductive glycine pathway could support highly efficient aerobic assimilation of C1-feedstocks.


Assuntos
Escherichia coli/metabolismo , Glicina/metabolismo , Aminoácido Oxirredutases/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Proteínas de Transporte/metabolismo , Formiatos/química , Formiatos/metabolismo , Complexos Multienzimáticos/metabolismo , Serina/metabolismo , Tetra-Hidrofolatos/química , Transferases/metabolismo
10.
ACS Synth Biol ; 7(9): 2029-2036, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30106273

RESUMO

Endowing biotechnological platform organisms with new carbon assimilation pathways is a key challenge for industrial biotechnology. Here we report progress toward the construction of formatotrophic Escherichia coli strains. Glycine and serine, universal precursors of one-carbon compounds oxidized during heterotrophic growth, are produced from formate and CO2 through a reductive route. An adaptive evolution strategy was applied to optimize the enzymatic steps of this route in appropriate selection strains. Metabolic labeling experiments with 13C-formate confirm the redirected carbon-flow. These results demonstrate the high plasticity of the central carbon metabolism of E. coli and the applicative potential of directed evolution for implementing synthetic pathways in microorganisms.


Assuntos
Carbono/metabolismo , Evolução Molecular Direcionada/métodos , Escherichia coli/metabolismo , Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Formiatos/química , Formiatos/metabolismo , Glutationa/análise , Glutationa/química , Serina/metabolismo , Espectrometria de Massas em Tandem
11.
Genome Announc ; 6(8)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472323

RESUMO

Methylobacterium extorquens TK 0001 (DSM 1337, ATCC 43645) is an aerobic pink-pigmented facultative methylotrophic alphaproteobacterium isolated from soil in Poland. Here, we report the whole-genome sequence and annotation of this organism, which consists of a single 5.71-Mb chromosome.

12.
ACS Synth Biol ; 7(12): 2742-2749, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30475588

RESUMO

Insufficient rate of NADPH regeneration often limits the activity of biosynthetic pathways. Expression of NADPH-regenerating enzymes is commonly used to address this problem and increase cofactor availability. Here, we construct an Escherichia coli NADPH-auxotroph strain, which is deleted in all reactions that produce NADPH with the exception of 6-phosphogluconate dehydrogenase. This strain grows on a minimal medium only if gluconate is added as NADPH source. When gluconate is omitted, the strain serves as a "biosensor" for the capability of enzymes to regenerate NADPH in vivo. We show that the NADPH-auxotroph strain can be used to quantitatively assess different NADPH-regenerating enzymes and provide essential information on expression levels and concentrations of reduced substrates required to support optimal NADPH production rate. The NADPH-auxotroph strain thus serves as an effective metabolic platform for evaluating NADPH regeneration within the cellular context.


Assuntos
Escherichia coli/metabolismo , NADP/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Engenharia Genética , Gluconatos/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , NAD/metabolismo , Fenótipo , Propanóis/metabolismo , Propanóis/farmacologia
13.
Nucleic Acids Res ; 32(19): 5780-90, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15514111

RESUMO

Acinetobacter sp. strain ADP1 is a naturally transformable gram-negative bacterium with simple culture requirements, a prototrophic metabolism and a compact genome of 3.7 Mb which has recently been sequenced. Wild-type ADP1 can be genetically manipulated by the direct addition of linear DNA constructs to log-phase cultures. This makes it an ideal organism for the automation of complex strain construction. Here, we demonstrate the flexibility and versatility of ADP1 as a genetic model through the construction of a broad variety of mutants. These include marked and unmarked insertions and deletions, complementary replacements, chromosomal expression tags and complex combinations thereof. In the process of these constructions, we demonstrate that ADP1 can effectively express a wide variety of foreign genes including antibiotic resistance cassettes, essential metabolic genes, negatively selectable catabolic genes and even intact operons from highly divergent bacteria. All of the described mutations were achieved by the same process of splicing PCR, direct transformation of growing cultures and plating on selective media. The simplicity of these tools make genetic analysis and engineering with Acinetobacter ADP1 accessible to laboratories with minimal microbial genetics expertise and very little equipment. They are also compatible with complete automation of genetic analysis and engineering protocols.


Assuntos
Acinetobacter/genética , Engenharia Genética , Genoma Bacteriano , Modelos Genéticos , Acinetobacter/crescimento & desenvolvimento , Sequência de Bases , Meios de Cultura , Deleção de Genes , Mutação , Fenótipo , Reação em Cadeia da Polimerase , Transformação Bacteriana
15.
Prog Biophys Mol Biol ; 113(1): 33-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23562479

RESUMO

BACKGROUND: Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins. RESULTS: Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts. CONCLUSIONS: Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores.


Assuntos
Algoritmos , Cinetocoros/química , Cinetocoros/ultraestrutura , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica
16.
PLoS One ; 7(9): e44717, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028590

RESUMO

Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H) assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN, CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase, following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could be important for kinetochores switching into the correct conformation necessary for microtubule-attachment.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Histonas , Humanos , Proteínas Nucleares/genética
17.
J Biol Chem ; 277(48): 45729-33, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12244062

RESUMO

The rules of the genetic code are established in reactions that aminoacylate tRNAs with specific amino acids. Ambiguity in the code is prevented by editing activities whereby incorrect aminoacylations are cleared by specialized hydrolytic reactions of aminoacyl tRNA synthetases. Whereas editing reactions have long been known, their significance for cell viability is still poorly understood. Here we investigated in vitro and in vivo four different mutations in the center for editing that diminish the proofreading activity of valyl-tRNA synthetase (ValRS). The four mutant enzymes were shown to differ quantitatively in the severity of the defect in their ability to clear mischarged tRNA in vitro. Strikingly, in the presence of excess concentrations of alpha-aminobutyrate, one of the amino acids that is misactivated by ValRS, growth of bacterial strains bearing these mutant alleles is arrested. The concentration of misactivated amino acid required for growth arrest correlates inversely in a rank order with the degree of the editing defect seen in vitro. Thus, cell viability depends directly on the suppression of genetic code ambiguity by these specific editing reactions and is finely tuned to any perturbation of these reactions.


Assuntos
Código Genético , Mutação , Edição de RNA , Valina-tRNA Ligase/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Valina-tRNA Ligase/química , Valina-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA