Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(3): e3001578, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263320

RESUMO

Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Análise por Conglomerados , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo
2.
J Biol Chem ; 292(9): 3919-3928, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28154193

RESUMO

Increasing lines of evidence support the causal link between α-synuclein (α-syn) accumulation in the brain and Parkinson's disease (PD) pathogenesis. Therefore, lowering α-syn protein levels may represent a viable therapeutic strategy for the treatment of PD and related disorders. We recently described a novel selective α-syn degradation pathway, catalyzed by the activity of the Polo-like kinase 2 (PLK2), capable of reducing α-syn protein expression and suppressing its toxicity in vivo However, the exact molecular mechanisms underlying this degradation route remain elusive. In the present study we report that among PLK family members, PLK3 is also able to catalyze α-syn phosphorylation and degradation in living cells. Using pharmacological and genetic approaches, we confirmed the implication of the macroautophagy on PLK2-mediated α-syn turnover, and our observations suggest a concomitant co-degradation of these two proteins. Moreover, we showed that the N-terminal region of α-syn is important for PLK2-mediated α-syn phosphorylation and degradation and is implicated in the physical interaction between the two proteins. We also demonstrated that PLK2 polyubiquitination is important for PLK2·α-syn protein complex degradation, and we hypothesize that this post-translational modification may act as a signal for the selective recognition by the macroautophagy machinery. Finally, we observed that the PD-linked mutation E46K enhances PLK2-mediated α-syn degradation, suggesting that this mutated form is a bona fide substrate of this degradation pathway. In conclusion, our study provides a detailed description of the new degradation route of α-syn and offers new opportunities for the development of therapeutic strategies aiming to reduce α-syn protein accumulation and toxicity.


Assuntos
Autofagia , Proteínas Serina-Treonina Quinases/metabolismo , alfa-Sinucleína/metabolismo , Catálise , Células HEK293 , Humanos , Mutação , Fosforilação , Plasmídeos/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , Serina/química , Proteínas Supressoras de Tumor , Ubiquitina/química
3.
Nat Commun ; 15(1): 2407, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494474

RESUMO

There is currently no medical therapy to prevent calcific aortic valve stenosis (CAVS). Multi-omics approaches could lead to the identification of novel molecular targets. Here, we perform a genome-wide association study (GWAS) meta-analysis including 14,819 cases among 941,863 participants of European ancestry. We report 32 genomic loci, among which 20 are novel. RNA sequencing of 500 human aortic valves highlights an enrichment in expression regulation at these loci and prioritizes candidate causal genes. Homozygous genotype for a risk variant near TWIST1, a gene involved in endothelial-mesenchymal transition, has a profound impact on aortic valve transcriptomics. We identify five genes outside of GWAS loci by combining a transcriptome-wide association study, colocalization, and Mendelian randomization analyses. Using cross-phenotype and phenome-wide approaches, we highlight the role of circulating lipoproteins, blood pressure and inflammation in the disease process. Our findings pave the way for the development of novel therapies for CAVS.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Valva Aórtica/patologia , Calcinose , Humanos , Valva Aórtica/metabolismo , Estudo de Associação Genômica Ampla , Estenose da Valva Aórtica/genética , Genômica
4.
Cancers (Basel) ; 13(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34503171

RESUMO

Skin cancers are the most common cancers worldwide. Among them, melanoma, basal cell carcinoma of the skin and cutaneous squamous cell carcinoma are the three major subtypes. These cancers are characterized by different genetic perturbations even though they are similarly caused by a lifelong exposure to the sun. The main oncogenic drivers of skin cancer initiation have been known for a while, yet it remains unclear what are the molecular events that mediate their oncogenic functions and that contribute to their progression. Moreover, patients with aggressive skin cancers have been known to develop resistance to currently available treatment, which is urging us to identify new therapeutic opportunities based on a better understanding of skin cancer biology. More recently, the contribution of cytoskeletal dynamics and Rho GTPase signaling networks to the progression of skin cancers has been highlighted by several studies. In this review, we underline the various perturbations in the activity and regulation of Rho GTPase network components that contribute to skin cancer development, and we explore the emerging therapeutic opportunities that are surfacing from these studies.

5.
Cells ; 9(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526908

RESUMO

Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell-cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases' biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases' effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA