Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2312607121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236735

RESUMO

Homosporous lycophytes (Lycopodiaceae) are a deeply diverged lineage in the plant tree of life, having split from heterosporous lycophytes (Selaginella and Isoetes) ~400 Mya. Compared to the heterosporous lineage, Lycopodiaceae has markedly larger genome sizes and remains the last major plant clade for which no chromosome-level assembly has been available. Here, we present chromosomal genome assemblies for two homosporous lycophyte species, the allotetraploid Huperzia asiatica and the diploid Diphasiastrum complanatum. Remarkably, despite that the two species diverged ~350 Mya, around 30% of the genes are still in syntenic blocks. Furthermore, both genomes had undergone independent whole genome duplications, and the resulting intragenomic syntenies have likewise been preserved relatively well. Such slow genome evolution over deep time is in stark contrast to heterosporous lycophytes and is correlated with a decelerated rate of nucleotide substitution. Together, the genomes of H. asiatica and D. complanatum not only fill a crucial gap in the plant genomic landscape but also highlight a potentially meaningful genomic contrast between homosporous and heterosporous species.


Assuntos
Genoma de Planta , Genômica , Genoma de Planta/genética , Tamanho do Genoma , Filogenia , Evolução Molecular
2.
Environ Sci Technol ; 56(18): 12898-12905, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36026692

RESUMO

Iron (Fe), molybdenum (Mo), and vanadium (V) are the main components of the three known biological nitrogenases, which constrain nitrogen fixation and affect ecosystem productivity. Atmospheric deposition is an important pathway of these trace metals into ecosystems. Here, we explored the deposition flux, spatiotemporal pattern, and influencing factors of atmospheric wet Fe, Mo, and V deposition based on China Wet Deposition Observation Network (ChinaWD) data from 2016 to 2020. Our results showed that atmospheric wet Fe, Mo, and V deposition was 7.77 ± 7.24, 0.16 ± 0.11, and 0.13 ± 0.12 mg m-2 a-1 in Chinese terrestrial ecosystems, respectively, and revealed obvious spatial patterns but no significant annual trends. Wet Fe deposition was significantly correlated with the soil Fe content. Mo and V deposition was more affected by anthropogenic activities than Fe deposition. Wet Mo deposition was significantly affected by Mo ore reserves and waste incineration. V deposition was significantly correlated with domestic biomass burning. This study quantified wet Fe, Mo, and V deposition in China for the first time, and the implications of atmospheric trace metal deposition on biological nitrogen fixation were discussed.


Assuntos
Oligoelementos , Vanádio , China , Ecossistema , Monitoramento Ambiental/métodos , Ferro/metabolismo , Molibdênio , Nitrogênio/metabolismo , Solo , Vanádio/metabolismo
3.
Front Microbiol ; 14: 1087475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266006

RESUMO

Soil fungi are a key component of terrestrial ecosystems and play a major role in soil biogeochemical cycling. Although the diversity and composition of fungal communities are regulated by many abiotic and biotic factors, the effect of elevation on soil fungal community diversity and composition remains largely unknown. In this study, the soil fungal composition and diversity in Deyeuxia angustifolia populations along an elevational gradient (1,690 m to 2020 m a.s.l.) were assessed, using Illumina MiSeq sequencing, on the north-facing slope of the Changbai Mountain, northeastern China. Our results showed that soil physicochemical parameters changed significantly along with the elevational gradients. The Ascomycota and Basidiomycota were the most dominant phyla along with the gradient. Alpha diversity of soil fungi decreased significantly with elevation. Soil nitrate nitrogen (NO3--N) was positively correlated with fungal richness and phylogenetic diversity (PD), indicating that soil nitrate nitrogen (NO3--N) is a key soil property determining fungal community diversity. In addition to soil nitrate content, soil pH and soil moisture were the most important environmental properties determining the soil fungal diversity. Our results suggest that the elevational changes in soil physicochemical properties play a key role in shaping the community composition and diversity of soil fungi. This study will allow us to better understand the biodiversity distribution patterns of soil microorganisms in mountain ecosystems.

4.
Front Microbiol ; 13: 1065412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532438

RESUMO

Soil bacteria play important roles in biogeochemical cycling and biodiversity in mountain ecosystems. Past studies have investigated the bacterial community composition and diversity in elevation gradations covered by different vegetation types, but for a better assessment of elevation effects, here we studied bacterial communities in soil under identical vegetation cover. High-throughput amplicon sequencing of the V3-V4 region of bacterial 16S rDNA was used to investigate the diversity and composition bacterial communities in soil from 700 to 1,000 m above sea level collected on the north slope of Changbai Mountains, Northeast China. Obviously differences (p < 0.05) in soil physicochemical parameters (i.e., total nitrogen, nitrate and ammonium nitrogen, soil moisture content, available potassium, microbial biomass carbon and nitrogen) were observed at different elevations. Soil bacterial abundance indices (Richness, Chao1, ACE) differed significantly along the elevation gradient, whereas the Shannon index remained unchanged. Principal Coordinates Analysis indicated separated soil bacterial communities of the different elevations. The dominant phyla in all soil samples were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Bacteroidetes, which in combination reached 80%-85%. Soil pH to some extend related to soil bacterial community along altitude gradations. The relative abundance of a multiple phyla was negatively affected by the soil nutrients, such as ammonium and nitrate nitrogen, available potassium, soil moisture content, available phosphorus, microbial biomass nitrogen and soil organic C. The strongest effects were seen for Proteobacteria. The pH either positively or negatively correlated with specific genera. The soil bacterial function differed significantly among four elevations. The chemoheterotrophy, aerobic chemoheterotrophy and nitrification were the most dominant functions of soil bacteria among four elevations. Overall, the changes in soil physicochemical properties with elevation are important in shaping the bacterial diversity, composition and function in soil with the same above-ground vegetation of Changbai Mountains.

5.
Ecology ; 103(11): e3789, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35718750

RESUMO

Nitrogen (N) and phosphorus (P) are crucial nutrients for regulating plant growth. The classic growth rate hypothesis (GRH) proposes that fast-growing organisms have lower N:P ratios, and it is promising to predict net primary productivity (NPP) using the leaf N:P ratio at the community level (N:PCom ). However, whether leaf N:P ratio can predict NPP in natural ecosystems on a large scale remains nebulous. Here, we systematically calculated leaf N:PCom (community biomass-weighted mean and species arithmetic mean) using the consistently measured data of 2192 plant species-site combinations and productivity (biomass-based aboveground NPP and flux-based NPP) in 66 natural ecosystems in China. Unexpectedly, leaf N:PCom hardly predicted productivity in natural ecosystems due to their weak correlation, although significantly negative or positive relationships across different ecosystems were observed. The ambiguous relationship between leaf N:P and species dominance reflected a luxury consumption of N and P in turnover and structure in natural communities, unlike what GRH suggests. Climate, soil, and leaf nutrients (rather than N:P) influenced productivity, which highlighted the importance of external environment and nutrient constrains. Our findings pose a major challenge for leaf N:PCom as a direct parameter in productivity models and further question the direct application of classic hypotheses in short-term experiments or model species to long-term and complex natural ecosystems.


Assuntos
Ecossistema , Fósforo , Fósforo/análise , Nitrogênio/análise , Solo/química , Folhas de Planta/química , Biomassa
6.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2405-2412, 2022 Sep.
Artigo em Zh | MEDLINE | ID: mdl-36131656

RESUMO

Forest is the main component of terrestrial ecosystems that harbors about 40% of the existing species on the earth. As a vital component of biodiversity, phyllosphere microbes in the canopy play a critical and unique role in maintaining plant health, improving host resistance, and influencing global biogeochemical cycle. However, the studies on the community structure of phyllosphere fungi in natural forests are scarce as compared to that on rhizosphere microbes. Consequently, we know litter about how phyllosphere fungi associates with leaf traits. In this study, we analyzed fungal community composition of canopy leaves of six dominant tree species (i.e., Pinus koraiensis, Tilia amurensis, Quercus mongolica, Acer mono, Fraxinus mandshurica, and Ulmus japonica), in a broad-leaved Korean pine forest of Changbai Mountain Nature Reserve in Jilin Province, using high-throughput sequencing. We compared the differences of phyllosphere fungal community structure and functional groups of different dominant tree species. Moreover, 14 key leaf functional traits of their host trees were measured to investigate the relationships between fungal community composition and leaf functional traits. We found that the dominant phyla and class of phyllosphere fungi were Ascomycota and Basidiomycota, and Dothideomycetes and Taphrinomycetes, respectively. Results of LEfSe analysis indicated that all the tree species except Ulmus japonica had significant biomarkers, such as the Eurotiomycetes of Pinus koraiensis and the Ascomycetes of Quercus mongolica. The main functional groups of phyllosphere fungi were pathotroph. The results of redundancy and envfit analysis showed that functional traits related to plant nutrient acquisition as well as resistance to diseases and pests were the main factors influencing the community structure of phyllosphere fungi.


Assuntos
Pinus , Quercus , China , Ecossistema , Florestas , Fungos , República da Coreia , Árvores
7.
Sci Total Environ ; 795: 148849, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246133

RESUMO

Ecological stoichiometry is an efficient tool for exploring the balance and cycling of coupled elements (e.g., carbon [C], nitrogen [N], and phosphorus [P]). Therefore, C:N:P ratios are essential input parameters in most ecological models of productivity or C cycling. However, previous C:N:P ratios estimated using the species arithmetic means exhibit high uncertainty when used as direct model parameters. In this study, we comprehensively calculated C:N:P ratios from organs to ecosystems for 66 typical natural ecosystems in China (e.g., forests, grasslands, and deserts) using the community biomass-weighted mean (CWM), with the consistently measured element data of 3229 site-species combination. The C:N:P ratios were 427:19:1, 885:13:1, 9549:33:1, and 797:18:1 in the leaves, branches, trunks, and roots of terrestrial ecosystems, respectively. Furthermore, the ratios were 91:4:1, 919:17:1, 1121:25:1, and 55:4:1 in ecosystems, plant communities, litter, and soils, respectively. Significant differences were observed in C:N:P ratios among different ecosystem types and biomes, with generally higher ratios in forests. Moreover, the latitudinal patterns of C:N ratios exhibited no obvious trends, whereas both C:P and N:P ratios decreased significantly with increasing latitude, especially in forests. Environmental conditions explained 15.4-86.6% of the spatial variation of C:N:P ratios from organs to ecosystems. In summary, this study systematically demonstrates the variations in biome-scale C:N:P stoichiometry in terrestrial ecosystems, as well as their influencing factors, using the CWM. More importantly, this study provides a systematic dataset of C:N:P ratios from plot to biome scale that can be used to improve relevant ecological models.


Assuntos
Ecossistema , Fósforo , China , Florestas , Nitrogênio/análise , Fósforo/análise
8.
Ying Yong Sheng Tai Xue Bao ; 31(4): 1213-1222, 2020 Apr.
Artigo em Zh | MEDLINE | ID: mdl-32530196

RESUMO

To understand the dynamics of temperate forest in Northeast Asia and its response to climate change under the scenario of global change, we examined the temporal and spatial changes of normalized difference vegetation index (NDVI) and their correlation with temperature and precipitation of Changbai Mountain Nature Reserve in the growing season during 2001 and 2018, based on the remote sensing database of MODIS with a resolution of 250 m, land surface temperature data with a resolution of 1 km and meteorological data in the studied and surrounding area. The results showed that, in the growing season of 2001-2018, the averaged NDVI value of the study area was 0.711. Vegetation coverage was relatively high, increasing with a rate of 0.0025·a-1. The temperature showed an extremely significantly increasing trend (0.032 ℃·a-1), the rate of which was higher than that at global level. Precipitation also showed a significantly increasing trend (5.54 mm·a-1) with increased interannual variation. Spatially, NDVI generally was higher in the northwest and decreased with elevation. During the study period, the area with increased NDVI accounted for 46.2%, mainly concentrated in the north and south central high-altitude areas, while 53.8% of total area remained unchanged or slightly decrease. NDVI of the study area was mainly affected by temperature. At the annual scale, NDVI and land surface temperature were positively correlated, with 90.2% presented positive correlation and 43.6% significantly correlated. At the monthly scale, the impact of temperature on NDVI was more significant at the beginning and the end of growing season.


Assuntos
Mudança Climática , Florestas , China , Estações do Ano , Temperatura
9.
Sci Total Environ ; 651(Pt 1): 32-41, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223219

RESUMO

Decreased precipitation and increased anthropogenical by derived nitrogen (N) are important climate change factors that alter the availability of soil water and N which are crucial to root function and morphological traits. However, these factors are seldom explored in forests. To clarify how altered precipitation and N addition affect the uptake of organic and inorganic N by fine roots, a field hydroponic experiment using brief 15N exposures was conducted in a temperate forest in northern China. The root traits related to nutrient foraging (root morphology and mycorrhizal colonization) were measured simultaneously. Our results showed that all three tree species preferred ammonium (NH4+) over glycine and nitrate (NO3-), and NH4+ contributed 73% to the total N uptake from the soil. Uptake of glycine was higher than that of NO3-. Decreased precipitation, N addition, and their interaction increased NH4+ uptake rate compared with the control. Decreased precipitation decreased the glycine and NO3- uptake rate. Moreover, N addition, decreased precipitation and their interaction changed root morphological traits and significantly decreased mycorrhizal colonization. Although our treatments resulted in changes to the root traits and the forms of N uptake by plants, the total amount of N uptake did not change among all treatments. We conclude that although fine root traits of dominant tree species in temperate forests have high plasticity in response to climate change, nutrient balance in plants causes the total amount of N uptake to remain unchanged.


Assuntos
Compostos de Amônio/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Poluentes do Solo/metabolismo , Compostos de Amônio/análise , China , Florestas , Nitratos/análise , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Raízes de Plantas/metabolismo , Chuva , Neve , Poluentes do Solo/análise , Árvores/metabolismo
11.
Huan Jing Ke Xue ; 35(1): 9-14, 2014 Jan.
Artigo em Zh | MEDLINE | ID: mdl-24720178

RESUMO

To study seasonal variation of water-soluble ions in PM2.5 at Changbai Mountain. PM2.5 was collected with a high-volume sampler from Jun. 2005 to Dec. 2008, and the concentrations of water-soluble ions were analyzed using ion chromatography. The results showed that the three major ions of SO4(2-), NH4+ and NO3 showed obvious seasonal variation. The mass concentration of SO4(2-) was the highest in summer and lowest in autumn. The mass concentration of NO3- was the highest in winter and lowest in summer. The seasonal variation of NH4+ was influenced by SO4(2-) and NO3-. The total concentrations of water-soluble ions in PM2.5 from different directions were evidently different, following the order of NE < NW < SW, with the average concentrations of 5.43, 7.63 and 10.26 microg x m(-3), respectively. Ca2+ was strongly correlated with CO3(2-), and the correlation(R) was higher in spring (0.74) than that in summer (0.30).


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , China , Íons/análise , Tamanho da Partícula , Água
12.
PLoS One ; 8(12): e82468, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324794

RESUMO

The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.


Assuntos
Ecossistema , Nematoides , Nitrogênio/química , Solo/química , Solo/parasitologia , Árvores , Animais , Carbono/química , Meio Ambiente , Modelos Teóricos , Água/química
13.
PLoS One ; 7(2): e30754, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347401

RESUMO

BACKGROUND: Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and photosynthetic response in the temperate ecosystem. METHODS/PRINCIPAL FINDINGS: We applied N and water, alone and in combination, and investigated the combined effect of different water and N regimes on growth and photosynthetic responses of Fraxinus mandshurica seedlings. The seedlings were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower precipitation (LW) (CK -30%), and both with and without N addition for two growing seasons. We demonstrated that water and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was increased in leaf tissues of LW by N addition. CONCLUSIONS/SIGNIFICANCE: Our study has presented better understanding of the interactions between soil water and N on the growth and photosynthetic response in F. mandschurica seedlings, which may provide novel insights on the potential responses of the forest ecosystem to climate change associated with increasing N deposition.


Assuntos
Fraxinus/crescimento & desenvolvimento , Nitrogênio/farmacologia , Fotossíntese/efeitos dos fármacos , Plântula , Solo/química , Água/farmacologia , China , Ecossistema , Fraxinus/fisiologia
14.
PLoS One ; 7(4): e35076, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493732

RESUMO

For both ecologists and physiologists, foliar physioecology as a function of spatially and temporally variable environmental factors such as sunlight exposure within a tree crown is important for understanding whole tree physiology and for predicting ecosystem carbon balance and productivity. Hence, we studied concentrations of nitrogen (N), non-structural carbohydrates (NSC = soluble sugars + starch), and δ(13)C in different-aged needles within Pinus koraiensis tree crowns, to understand the needle age- and crown position-related physiology, in order to test the hypothesis that concentrations of N, NSC, and δ(13)C are needle-age and crown position dependent (more light, more photosynthesis affecting N, NSC, and δ(13)C), and to develop an accurate sampling strategy. The present study indicated that the 1-yr-old needles had significantly higher concentration levels of mobile carbohydrates (both on a mass and an area basis) and N(area) (on an area basis), as well as NSC-N ratios, but significantly lower levels of N(mass) (on a mass basis) concentration and specific leaf area (SLA), compared to the current-year needles. Azimuthal (south-facing vs. north-facing crown side) effects were found to be significant on starch [both on a mass (ST(mass)) and an area basis (ST(area))], δ(13)C values, and N(area), with higher levels in needles on the S-facing crown side than the N-facing crown side. Needle N(mass) concentrations significantly decreased but needle ST(mass), ST(area), and δ(13)C values significantly increased with increasing vertical crown levels. Our results suggest that the sun-exposed crown position related to photosynthetic activity and water availability affects starch accumulation and carbon isotope discrimination. Needle age associated with physiological activity plays an important role in determining carbon and nitrogen physiology. The present study indicates that across-scale sampling needs to carefully select tissue samples with equal age from a comparable crown position.


Assuntos
Carboidratos/fisiologia , Nitrogênio/fisiologia , Fotossíntese/fisiologia , Pinus/fisiologia , Folhas de Planta/fisiologia , Isótopos de Carbono/metabolismo , Ecossistema , Espectrometria de Massas , Amido/metabolismo , Luz Solar , Fatores de Tempo , Água/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 16(9): 1581-5, 2005 Sep.
Artigo em Zh | MEDLINE | ID: mdl-16355765

RESUMO

Employing root-wrenching method and LI-6400-09 soil respiration chamber, this paper measured the diurnal changes of soil respiration rate with and without roots in situ on June 17, August 5, and October 10, 2003. The seasonal changes of soil respiration were also measured from May to September, 2004. The results showed that both the total and the root-wrenched soil respiration appeared single diurnal pattern, with the peaks presented during 12:00-14:00. The diurnal fluctuation of soil respiration on August 5 was smaller than that on June 17 and October 10. There were also obvious seasonal changes in total and root-wrenched soil respiration, as well as in root respiration, which were higher from June to August but lower in May and September. The average total soil respiration, root-wrenched soil respiration, and root respiration were 3.12, 1.94 and 1.18 micromol CO2 x m(-2) s(-1), respectively, and the contribution of roots to total soil respiration ranged from 26.5% to 52.6% from May to September, 2004. There were exponential correlations between respiration rate and soil temperature, and linear correlations between respiration rate and soil humidity. The Q10 values were 2.44, 2.55 and 2.27 for total soil respiration, root-wrenched soil respiration, and root respiration, respectively. The effect of soil temperature on root-wrenched soil respiration was lager than that on total soil respiration and root respiration. Soil humidity had a larger effect on total soil respiration than on root respiration and root-wrenched soil respiration.


Assuntos
Pinus/fisiologia , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Solo/análise , China , Umidade , Pinus/crescimento & desenvolvimento , Temperatura
16.
Ying Yong Sheng Tai Xue Bao ; 15(5): 737-40, 2004 May.
Artigo em Zh | MEDLINE | ID: mdl-15320384

RESUMO

In this paper, the floor and epiphytic bryophyte biomass was sampled from the dark coniferous forest on the north slope of Changbai Mountain, with an altitude from 1100 m to 1700 m. The floor bryophyte biomass was measured by the method of transect sampling, and epiphytic bryophyte biomass was measured by McCune method. The results showed that bryophytes distributed unevenly, and their biomass changed greatly with increasing altitude. The biomass was the least (543 kg x hm(-2)) at 1100 m, but the greatest (5097 kg x hm(-2)) at 1250 m. The changes of bryophytes biomass could indicate different environmental situations. The biomass change of Hylocomium splendens and Rhytidiadelphus triquetrus with ascending altitude had some relativity with the community character of forest ecosystem. The biomass of Hylocomium splendens increased, but that of Rhytidiadelphus triquetrus decreased with altitude ascending from 1100 m to 1700 m. Moreover, the biomass changes could also show the needed physiological conditions of different bryophytes.


Assuntos
Biomassa , Briófitas/crescimento & desenvolvimento , Traqueófitas , Altitude , China , Conservação dos Recursos Naturais , Ecossistema , Traqueófitas/crescimento & desenvolvimento
17.
Ying Yong Sheng Tai Xue Bao ; 15(10): 1828-32, 2004 Oct.
Artigo em Zh | MEDLINE | ID: mdl-15624816

RESUMO

Based on the gradient measurement of microclimate factors, radiation and soil heat flux from late May to early October, 2001 and by the method of Bowen ratio-energy balance (BREB), this paper estimated the latent heat and sensible heat above the broadleaved Korean pine forest in Changbai Mountains. The energy storage of forest air and vegetative was calculated, and the seasonal variations of heat balance components of the forest were analyzed. The results showed that the net radiation of the forest and the solar radiation were linearly correlated. All the heat balance components had the similar characteristics of diurnal variation to the net radiation, showing curves positive at daytime and negative at night, and the terms ranged as net radiation > latent heat > sensible heat > storage. The time of keeping positive terms in a day became shorter from June to October as influenced by shinning time. The highest net radiation was in June and the lowest in October. The monthly averaged net radiation was 0-527 and 0-(-)121 W x m(-2), and the latent heat was 0-441 and 0-(-)81 W x m(-2) for day and night, respectively. Sensible heat was 0-80 and 0-(-)26 W x m(-2), and energy storage was 0-44 and 0-(-)26 W x m(-2) for day and night, respectively. The ratio of latent heat to net radiation at daytime decreased gradually from August to October, and the ratio of sensible heat and energy storage increased correspondingly. Especially 2-3 days after the first severe frost, a sudden drop of latent heat and a sudden bounce of sensible heat appeared. The instruments and measurement methods of heat flux were also concisely discussed in this paper.


Assuntos
Metabolismo Energético , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Luz Solar , China , Temperatura Alta , Microclima , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA