Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7923): 534-539, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831499

RESUMO

Forest ecosystems depend on their capacity to withstand and recover from natural and anthropogenic perturbations (that is, their resilience)1. Experimental evidence of sudden increases in tree mortality is raising concerns about variation in forest resilience2, yet little is known about how it is evolving in response to climate change. Here we integrate satellite-based vegetation indices with machine learning to show how forest resilience, quantified in terms of critical slowing down indicators3-5, has changed during the period 2000-2020. We show that tropical, arid and temperate forests are experiencing a significant decline in resilience, probably related to increased water limitations and climate variability. By contrast, boreal forests show divergent local patterns with an average increasing trend in resilience, probably benefiting from warming and CO2 fertilization, which may outweigh the adverse effects of climate change. These patterns emerge consistently in both managed and intact forests, corroborating the existence of common large-scale climate drivers. Reductions in resilience are statistically linked to abrupt declines in forest primary productivity, occurring in response to slow drifting towards a critical resilience threshold. Approximately 23% of intact undisturbed forests, corresponding to 3.32 Pg C of gross primary productivity, have already reached a critical threshold and are experiencing a further degradation in resilience. Together, these signals reveal a widespread decline in the capacity of forests to withstand perturbation that should be accounted for in the design of land-based mitigation and adaptation plans.


Assuntos
Aclimatação , Mudança Climática , Florestas , Modelos Biológicos , Árvores , Dióxido de Carbono/metabolismo , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Agricultura Florestal , História do Século XXI , Aprendizado de Máquina , Imagens de Satélites , Taiga , Temperatura , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/análise , Água/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(21): e2216573120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186854

RESUMO

Declines in European bird populations are reported for decades but the direct effect of major anthropogenic pressures on such declines remains unquantified. Causal relationships between pressures and bird population responses are difficult to identify as pressures interact at different spatial scales and responses vary among species. Here, we uncover direct relationships between population time-series of 170 common bird species, monitored at more than 20,000 sites in 28 European countries, over 37 y, and four widespread anthropogenic pressures: agricultural intensification, change in forest cover, urbanisation and temperature change over the last decades. We quantify the influence of each pressure on population time-series and its importance relative to other pressures, and we identify traits of most affected species. We find that agricultural intensification, in particular pesticides and fertiliser use, is the main pressure for most bird population declines, especially for invertebrate feeders. Responses to changes in forest cover, urbanisation and temperature are more species-specific. Specifically, forest cover is associated with a positive effect and growing urbanisation with a negative effect on population dynamics, while temperature change has an effect on the dynamics of a large number of bird populations, the magnitude and direction of which depend on species' thermal preferences. Our results not only confirm the pervasive and strong effects of anthropogenic pressures on common breeding birds, but quantify the relative strength of these effects stressing the urgent need for transformative changes in the way of inhabiting the world in European countries, if bird populations shall have a chance of recovering.


Assuntos
Agricultura , Florestas , Animais , Fazendas , Europa (Continente) , Dinâmica Populacional , Aves/fisiologia , Biodiversidade , Ecossistema , Conservação dos Recursos Naturais
3.
Proc Natl Acad Sci U S A ; 119(35): e2116413119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994657

RESUMO

Lakes are often described as sentinels of global change. Phenomena like lake eutrophication, algal blooms, or reorganization in community composition belong to the most studied ecosystem regime shifts. However, although regime shifts have been well documented in several lakes, a global assessment of the prevalence of regime shifts is still missing, and, more in general, of the factors altering stability in lake status, is missing. Here, we provide a first global assessment of regime shifts and stability in the productivity of 1,015 lakes worldwide using trophic state index (TSI) time series derived from satellite imagery. We find that 12.8% of the lakes studied show regime shifts whose signatures are compatible with tipping points, while the number of detected regime shifts from low to high TSI has increased over time. Although our results suggest an overall stable picture for global lake dynamics, the limited instability signatures do not mean that lakes are insensitive to global change. Modeling the interaction between lake climatic, geophysical, and socioeconomic features and their stability properties, we find that the probability of a lake experiencing a tipping point increases with human population density in its catchment, while it decreases as the gross domestic product of that population increases. Our results show how quantifying lake productivity dynamics at a global scale highlights socioeconomic inequalities in conserving natural environments.


Assuntos
Ecossistema , Eficiência , Eutrofização , Internacionalidade , Lagos , Produto Interno Bruto , Humanos , Densidade Demográfica , Imagens de Satélites , Fatores Socioeconômicos , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 119(43): e2123393119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252001

RESUMO

The constant provision of plant productivity is integral to supporting the liability of ecosystems and human wellbeing in global drylands. Drylands are paradigmatic examples of systems prone to experiencing abrupt changes in their functioning. Indeed, space-for-time substitution approaches suggest that abrupt changes in plant productivity are widespread, but this evidence is less clear using observational time series or experimental data at a large scale. Studying the prevalence and, most importantly, the unknown drivers of abrupt (rather than gradual) dynamical patterns in drylands may help to unveil hotspots of current and future dynamical instabilities in drylands. Using a 20-y global satellite-derived temporal assessment of dryland Normalized Difference Vegetation Index (NDVI), we show that 50% of all dryland ecosystems exhibiting gains or losses of NDVI are characterized by abrupt positive/negative temporal dynamics. We further show that abrupt changes are more common among negative than positive NDVI trends and can be found in global regions suffering recent droughts, particularly around critical aridity thresholds. Positive abrupt dynamics are found most in ecosystems with low seasonal variability or high aridity. Our work unveils the high importance of climate variability on triggering abrupt shifts in vegetation and it provides missing evidence of increasing abruptness in systems intensively managed by humans, with low soil organic carbon contents, or around specific aridity thresholds. These results highlight that abrupt changes in dryland dynamics are very common, especially for productivity losses, pinpoint global hotspots of dryland vulnerability, and identify drivers that could be targeted for effective dryland management.


Assuntos
Ecossistema , Solo , Carbono , Mudança Climática , Humanos , Plantas , Prevalência
5.
Ecol Lett ; 26(5): 692-705, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893479

RESUMO

Ecosystems under stress may respond abruptly and irreversibly through tipping points. Although mechanisms leading to alternative stable states are much studied, little is known about how such ecosystems could have emerged in the first place. We investigate whether evolution by natural selection along resource gradients leads to bistability, using shallow lakes as an example. There, tipping points occur between two alternative states dominated by either submersed or floating macrophytes depending on nutrient loading. We model the evolution of macrophyte depth in the lake, identify the conditions under which the ancestor population diversifies and investigate whether alternative stable states dominated by different macrophyte phenotypes occur. We find that eco-evolutionary dynamics may lead to alternative stable states, but under restrictive conditions. Such dynamics require sufficient asymmetries in the acquisition of both light and nutrient. Our analysis suggests that competitive asymmetries along opposing resource gradients may allow bistability to emerge by natural selection.


Assuntos
Ecossistema , Lagos , Fitoplâncton , Nutrientes
6.
Ecol Lett ; 26(1): 170-183, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36318189

RESUMO

Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances. Using several population dynamics models, we demonstrate that we can infer these rankings from time-series data to predict the order of species sensitivities. We find that the most sensitive species are not always the ones with the most rapidly changing or lowest abundance, which are typical criteria used to monitor populations. Finally, using two empirical time series, we show that sensitive species tend to be harder to forecast. Our results suggest that incorporating information on species interactions can improve how we manage communities out of equilibrium.


Assuntos
Biota , Fatores de Tempo , Dinâmica Populacional , Previsões
7.
Glob Chang Biol ; 29(5): 1223-1238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461630

RESUMO

Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization-that is, community and food web. Building on the framework of consumer-resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.


Assuntos
Ecologia , Ecossistema , Cadeia Alimentar , Biodiversidade , Mudança Climática
8.
PLoS Biol ; 18(8): e3000843, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866143

RESUMO

Interactions between species generate the functions on which ecosystems and humans depend. However, we lack an understanding of the risk that interaction loss poses to ecological communities. Here, we quantify the risk of interaction loss for 4,330 species interactions from 41 empirical pollination and seed dispersal networks across 6 continents. We estimate risk as a function of interaction vulnerability to extinction (likelihood of loss) and contribution to network feasibility, a measure of how much an interaction helps a community tolerate environmental perturbations. Remarkably, we find that more vulnerable interactions have higher contributions to network feasibility. Furthermore, interactions tend to have more similar vulnerability and contribution to feasibility across networks than expected by chance, suggesting that vulnerability and feasibility contribution may be intrinsic properties of interactions, rather than only a function of ecological context. These results may provide a starting point for prioritising interactions for conservation in species interaction networks in the future.


Assuntos
Biota , Simbiose , Animais , Estudos de Viabilidade , Plantas/anatomia & histologia , Risco , Especificidade da Espécie
9.
J Anim Ecol ; 91(9): 1842-1854, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704282

RESUMO

Pairs of plants and pollinators species sometimes consistently interact throughout time and across space. Such consistency can be interpreted as a sign of interaction fidelity, that is a consistent interaction between two species when they co-occur in the same place. But how common interaction fidelity is and what determines interaction fidelity in plant-pollinator communities remain open questions. We aim to assess how frequent is interaction fidelity between plants and their pollinators and what drives interaction fidelity across plant-pollinator communities. Using a dataset of 141 networks around the world, we quantify whether the interaction between pairs of plant and pollinator species happens more ('interaction fidelity') or less ('interaction avoidance') often than expected by chance given the structure of the networks in which they co-occur. We also explore the relationship between interaction fidelity and species' degree (i.e. number of interactions), and the taxonomy of the species involved in the interaction. Our findings reveal that most plant-pollinator interactions do not differ from random expectations, in other words show neither fidelity nor avoidance. Out of the total 44,814 co-occurring species pairs we found 7,877 unique pair interactions (18%). Only 551 (7%) of the 7,877 plant-pollinator interactions did show significant interaction fidelity, meaning that these pairs interact in a consistent and non-random way across networks. We also find that 39 (0.09%) out of 44,814 plant-pollinator pairs showed significant interaction avoidance. Our results suggest that interactions involving specialist species have a high probability to show interaction fidelity and a low probability of interaction avoidance. In addition, we find that particular associations between plant and insect orders, as for example interactions between Hymenoptera and Fabales, showed high fidelity and low avoidance. Although niche and neutral processes simultaneously influence patterns of interaction in ecological communities, our findings suggest that it is rather neutral processes that are shaping the patterns of interactions in plant-pollinator networks.


Assuntos
Magnoliopsida , Polinização , Animais , Biota , Insetos , Plantas
10.
Proc Natl Acad Sci U S A ; 116(51): 25714-25720, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31801881

RESUMO

Understanding the stability of ecological communities is a matter of increasing importance in the context of global environmental change. Yet it has proved to be a challenging task. Different metrics are used to assess the stability of ecological systems, and the choice of one metric over another may result in conflicting conclusions. Although each of the multitude of metrics is useful for answering a specific question about stability, the relationship among metrics is poorly understood. Such lack of understanding prevents scientists from developing a unified concept of stability. Instead, by investigating these relationships we can unveil how many dimensions of stability there are (i.e., in how many independent components stability metrics can be grouped), which should help build a more comprehensive concept of stability. Here we simultaneously measured 27 stability metrics frequently used in ecological studies. Our approach is based on dynamical simulations of multispecies trophic communities under different perturbation scenarios. Mapping the relationships between the metrics revealed that they can be lumped into 3 main groups of relatively independent stability components: early response to pulse, sensitivities to press, and distance to threshold. Selecting metrics from each of these groups allows a more accurate and comprehensive quantification of the overall stability of ecological communities. These results contribute to improving our understanding and assessment of stability in ecological communities.

11.
Am Nat ; 198(6): E185-E197, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762570

RESUMO

AbstractThere is growing concern about the dire socioecological consequences of abrupt transitions between alternative ecosystem states in response to environmental changes. At the same time, environmental change can trigger evolutionary responses that could stabilize or destabilize ecosystem dynamics. However, we know little about how coupled ecological and evolutionary processes affect the risk of transition between alternative ecosystem states. Using shallow lakes as a model ecosystem, we investigate how trait evolution of a key species affects ecosystem resilience under environmental stress. We find that adaptive evolution of macrophytes can increase ecosystem resilience by shifting the critical threshold, which marks the transition from a clear-water state to a turbid-water state to a higher level of environmental stress. However, following the transition, adaptation to the turbid-water state can delay the ecosystem recovery back to the clear-water state. This implies that restoration could be more effective when implemented early enough after a transition occurs and before organisms adapt to the alternative state. Our findings provide new insights into how to prevent and mitigate the occurrence of regime shifts in ecosystems and highlight the need to understand ecosystem responses to environmental change in the context of coupled ecological and evolutionary processes.


Assuntos
Ecossistema , Lagos , Aclimatação , Fenótipo , Água
12.
Ecol Lett ; 23(1): 2-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707763

RESUMO

Changing conditions may lead to sudden shifts in the state of ecosystems when critical thresholds are passed. Some well-studied drivers of such transitions lead to predictable outcomes such as a turbid lake or a degraded landscape. Many ecosystems are, however, complex systems of many interacting species. While detecting upcoming transitions in such systems is challenging, predicting what comes after a critical transition is terra incognita altogether. The problem is that complex ecosystems may shift to many different, alternative states. Whether an impending transition has minor, positive or catastrophic effects is thus unclear. Some systems may, however, behave more predictably than others. The dynamics of mutualistic communities can be expected to be relatively simple, because delayed negative feedbacks leading to oscillatory or other complex dynamics are weak. Here, we address the question of whether this relative simplicity allows us to foresee a community's future state. As a case study, we use a model of a bipartite mutualistic network and show that a network's post-transition state is indicated by the way in which a system recovers from minor disturbances. Similar results obtained with a unipartite model of facilitation suggest that our results are of relevance to a wide range of mutualistic systems.


Assuntos
Ecossistema , Modelos Biológicos , Previsões , Características de Residência , Simbiose
13.
Ecol Lett ; 22(9): 1349-1356, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286641

RESUMO

The concept of ecological stability occupies a prominent place in both fundamental and applied ecological research. We review decades of work on the topic and examine how our understanding has progressed. We show that our understanding of stability has remained fragmented and is limited largely to simple or simplified systems. There has been a profusion of metrics proposed to quantify stability, of which only a handful are used commonly. Furthermore, studies typically quantify one to two metrics of stability at a time and in response to a single perturbation, with some of the main environmental pressures of today being the least studied. We argue that we need to build on the existing consensus and strong theoretical foundation of the stability concept to better understand its multidimensionality and the interdependencies between metrics, levels of organisation and types of perturbations. Only by doing so can we make progress in the quantification of stability in theory and in practice, and eventually build a more comprehensive understanding of how ecosystems will respond to ongoing environmental change.


Assuntos
Ecologia , Ecossistema , Monitoramento Ambiental
14.
Glob Chang Biol ; 25(8): 2825-2840, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31012512

RESUMO

The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi-arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi-arid Mediterranean pine forests in Spain over 1950-2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long-term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low-frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non-stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non-stationary effects of ENSO can be propagated from tropical areas to semi-arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea-air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long-term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought-prone forests and review the expected impacts of global warming on the profiled mechanisms.


Assuntos
Carbono , Florestas , Oceano Atlântico , Oceanos e Mares , Espanha , Temperatura
15.
Proc Natl Acad Sci U S A ; 113(50): E8089-E8095, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911776

RESUMO

Ecosystems can show sudden and persistent changes in state despite only incremental changes in drivers. Such critical transitions are difficult to predict, because the state of the system often shows little change before the transition. Early-warning indicators (EWIs) are hypothesized to signal the loss of system resilience and have been shown to precede critical transitions in theoretical models, paleo-climate time series, and in laboratory as well as whole lake experiments. The generalizability of EWIs for detecting critical transitions in empirical time series of natural aquatic ecosystems remains largely untested, however. Here we assessed four commonly used EWIs on long-term datasets of five freshwater ecosystems that have experienced sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are well understood. These case studies were categorized by three mechanisms that can generate critical transitions between alternative states: competition, trophic cascade, and intraguild predation. Although EWIs could be detected in most of the case studies, agreement among the four indicators was low. In some cases, EWIs were detected considerably ahead of the transition. Nonetheless, our results show that at present, EWIs do not provide reliable and consistent signals of impending critical transitions despite using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests that a priori knowledge of the underlying mechanisms driving ecosystem transitions is necessary to identify relevant state variables for successfully monitoring EWIs.


Assuntos
Ecossistema , Água Doce , Modelos Biológicos , Animais , Bioestatística , Clima , Eutrofização , Cadeia Alimentar , Lagos , Comportamento Predatório , Fatores de Tempo
16.
Nature ; 492(7429): 419-22, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23160492

RESUMO

There is a recognized need to anticipate tipping points, or critical transitions, in social-ecological systems. Studies of mathematical and experimental systems have shown that systems may 'wobble' before a critical transition. Such early warning signals may be due to the phenomenon of critical slowing down, which causes a system to recover slowly from small impacts, or to a flickering phenomenon, which causes a system to switch back and forth between alternative states in response to relatively large impacts. Such signals for transitions in social-ecological systems have rarely been observed, not the least because high-resolution time series are normally required. Here we combine empirical data from a lake-catchment system with a mathematical model and show that flickering can be detected from sparse data. We show how rising variance coupled to decreasing autocorrelation and skewness started 10-30 years before the transition to eutrophic lake conditions in both the empirical records and the model output, a finding that is consistent with flickering rather than critical slowing down. Our results suggest that if environmental regimes are sufficiently affected by large external impacts that flickering is induced, then early warning signals of transitions in modern social-ecological systems may be stronger, and hence easier to identify, than previously thought.


Assuntos
Eutrofização , Previsões/métodos , Lagos , China , Diatomáceas/isolamento & purificação , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , História do Século XIX , História do Século XX , História do Século XXI , Lagos/química , Fósforo/análise , Fatores de Tempo
17.
Nature ; 481(7381): 357-9, 2011 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-22198671

RESUMO

Tipping points, at which complex systems can shift abruptly from one state to another, are notoriously difficult to predict. Theory proposes that early warning signals may be based on the phenomenon that recovery rates from small perturbations should tend to zero when approaching a tipping point; however, evidence that this happens in living systems is lacking. Here we test such 'critical slowing down' using a microcosm in which photo-inhibition drives a cyanobacterial population to a classical tipping point when a critical light level is exceeded. We show that over a large range of conditions, recovery from small perturbations becomes slower as the system comes closer to the critical point. In addition, autocorrelation in the subtle fluctuations of the system's state rose towards the tipping point, supporting the idea that this metric can be used as an indirect indicator of slowing down. Although stochasticity prohibits prediction of the timing of critical transitions, our results suggest that indicators of slowing down may be used to rank complex systems on a broad scale from resilient to fragile.


Assuntos
Cianobactérias/efeitos da radiação , Retroalimentação/efeitos da radiação , Luz , Modelos Biológicos , Biomassa , Cianobactérias/crescimento & desenvolvimento , Cinética , Fotossíntese/efeitos da radiação , Processos Estocásticos
18.
Proc Natl Acad Sci U S A ; 111(49): 17546-51, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422412

RESUMO

Tipping points are crossed when small changes in external conditions cause abrupt unexpected responses in the current state of a system. In the case of ecological communities under stress, the risk of approaching a tipping point is unknown, but its stakes are high. Here, we test recently developed critical slowing-down indicators as early-warning signals for detecting the proximity to a potential tipping point in structurally complex ecological communities. We use the structure of 79 empirical mutualistic networks to simulate a scenario of gradual environmental change that leads to an abrupt first extinction event followed by a sequence of species losses until the point of complete community collapse. We find that critical slowing-down indicators derived from time series of biomasses measured at the species and community level signal the proximity to the onset of community collapse. In particular, we identify specialist species as likely the best-indicator species for monitoring the proximity of a community to collapse. In addition, trends in slowing-down indicators are strongly correlated to the timing of species extinctions. This correlation offers a promising way for mapping species resilience and ranking species risk to extinction in a given community. Our findings pave the road for combining theory on tipping points with patterns of network structure that might prove useful for the management of a broad class of ecological networks under global environmental change.


Assuntos
Biota , Ecologia , Extinção Biológica , Simbiose , Algoritmos , Animais , Biomassa , Geografia , Modelos Biológicos , Modelos Teóricos , Plantas , Polinização
19.
Crit Care Med ; 44(3): 601-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26765499

RESUMO

OBJECTIVE: We propose a novel paradigm to predict acute attacks and exacerbations in chronic episodic disorders such as asthma, cardiac arrhythmias, migraine, epilepsy, and depression. A better generic understanding of acute transitions in chronic dynamic diseases is increasingly important in critical care medicine because of the higher prevalence and incidence of these chronic diseases in our aging societies. DATA SOURCES: PubMed, Medline, and Web of Science. STUDY SELECTION: We selected studies from biology and medicine providing evidence of slowing down after a perturbation as a warning signal for critical transitions. DATA EXTRACTION: Recent work in ecology, climate, and systems biology has shown that slowing down of recovery upon perturbations can indicate loss of resilience across complex, nonlinear biologic systems that are approaching a tipping point. This observation is supported by the empiric studies in pathophysiology and controlled laboratory experiments with other living systems, which can flip from one state of clinical balance to a contrasting one. We discuss examples of such evidence in bodily functions such as blood pressure, heart rate, mood, and respiratory regulation when a tipping point for a transition is near. CONCLUSIONS: We hypothesize that in a range of chronic episodic diseases, indicators of critical slowing down, such as rising variance and temporal correlation, may be used to assess the risk of attacks, exacerbations, and even mortality. Identification of such early warning signals over a range of diseases will enhance the understanding of why, how, and when attacks and exacerbations will strike and may thus improve disease management in critical care medicine.


Assuntos
Doença Crônica , Cuidados Críticos/métodos , Medição de Risco/métodos , Retroalimentação , Humanos , Modelos Biológicos , Fatores de Risco , Índice de Gravidade de Doença
20.
Nature ; 461(7260): 53-9, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19727193

RESUMO

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.


Assuntos
Ecossistema , Modelos Biológicos , Modelos Econômicos , Animais , Asma/fisiopatologia , Clima , Eutrofização , Extinção Biológica , Humanos , Convulsões/fisiopatologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA