Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408337

RESUMO

Due to the advantages of economics, safety, and efficiency, vision-based analysis techniques have recently gained conspicuous advancements, enabling them to be extensively applied for autonomous constructions. Although numerous studies regarding the defect inspection and condition assessment in underground sewer pipelines have presently emerged, we still lack a thorough and comprehensive survey of the latest developments. This survey presents a systematical taxonomy of diverse sewer inspection algorithms, which are sorted into three categories that include defect classification, defect detection, and defect segmentation. After reviewing the related sewer defect inspection studies for the past 22 years, the main research trends are organized and discussed in detail according to the proposed technical taxonomy. In addition, different datasets and the evaluation metrics used in the cited literature are described and explained. Furthermore, the performances of the state-of-the-art methods are reported from the aspects of processing accuracy and speed.


Assuntos
Algoritmos , Benchmarking
2.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208682

RESUMO

With the rapid rise of private vehicles around the world, License Plate Recognition (LPR) plays a vital role in supporting the government to manage vehicles effectively. However, an introduction of new types of license plate (LP) or slight changes in the LP format can break previous LPR systems, as they fail to recognize the LP. Moreover, the LPR system is extremely sensitive to the conditions of the surrounding environment. Thus, this paper introduces a novel deep learning-based Korean LPR system that can effectively deal with existing challenges. The main contributions of this study include (1) a robust LPR system with the integration of three pre-processing techniques (defogging, low-light enhancement, and super-resolution) that can effectively recognize the LP under various conditions, (2) the establishment of two original Korean LPR approaches for different scenarios, including whole license plate recognition (W-LPR) and single-character license plate recognition (SC-LPR), and (3) the introduction of two Korean LPR datasets (synthetic data and real data) involving a new type of LP introduced by the Korean government. Through several experiments, the proposed LPR framework achieved the highest recognition accuracy of 98.94%.


Assuntos
Redes Neurais de Computação , República da Coreia
3.
Plants (Basel) ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475499

RESUMO

Our research focuses on addressing the challenge of crop diseases and pest infestations in agriculture by utilizing UAV technology for improved crop monitoring through unmanned aerial vehicles (UAVs) and enhancing the detection and classification of agricultural pests. Traditional approaches often require arduous manual feature extraction or computationally demanding deep learning (DL) techniques. To address this, we introduce an optimized model tailored specifically for UAV-based applications. Our alterations to the YOLOv5s model, which include advanced attention modules, expanded cross-stage partial network (CSP) modules, and refined multiscale feature extraction mechanisms, enable precise pest detection and classification. Inspired by the efficiency and versatility of UAVs, our study strives to revolutionize pest management in sustainable agriculture while also detecting and preventing crop diseases. We conducted rigorous testing on a medium-scale dataset, identifying five agricultural pests, namely ants, grasshoppers, palm weevils, shield bugs, and wasps. Our comprehensive experimental analysis showcases superior performance compared to various YOLOv5 model versions. The proposed model obtained higher performance, with an average precision of 96.0%, an average recall of 93.0%, and a mean average precision (mAP) of 95.0%. Furthermore, the inherent capabilities of UAVs, combined with the YOLOv5s model tested here, could offer a reliable solution for real-time pest detection, demonstrating significant potential to optimize and improve agricultural production within a drone-centric ecosystem.

4.
Plants (Basel) ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514261

RESUMO

Pumpkins are a nutritious and globally enjoyed fruit for their rich and earthy flavor. The biophysical properties of pumpkins play an important role in determining their yield. However, manual in-field techniques for monitoring these properties can be time-consuming and labor-intensive. To address this, this research introduces a novel approach that feeds high-resolution pumpkin images to train a mathematical model to automate the measurement of each pumpkin's biophysical properties. Color correction was performed on the dataset using a color-checker panel to minimize the impact of varying light conditions on the RGB images. A segmentation model was then trained to effectively recognize two fundamental components of each pumpkin: the fruit and vine. Real-life measurements of various biophysical properties, including fruit length, fruit width, stem length, stem width and fruit peel color, were computed and compared with manual measurements. The experimental results on 10 different pumpkin samples revealed that the framework obtained a small average mean absolute percentage error (MAPE) of 2.5% compared to the manual method, highlighting the potential of this approach as a faster and more efficient alternative to conventional techniques for monitoring the biophysical properties of pumpkins.

5.
Sci Rep ; 13(1): 7434, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156854

RESUMO

Heat networks play a vital role in the energy sector by offering thermal energy to residents in certain countries. Effective management and optimization of heat networks require a deep understanding of users' heat usage patterns. Irregular patterns, such as peak usage periods, can exceed the design capacities of the system. However, previous work has mostly neglected the analysis of heat usage profiles or performed on a small scale. To close the gap, this study proposes a data-driven approach to analyze and predict heat load in a district heating network. The study uses data from over eight heating seasons of a cogeneration DH plant in Cheongju, Korea, to build analysis and forecast models using supervised machine learning (ML) algorithms, including support vector regression (SVR), boosting algorithms, and multilayer perceptron (MLP). The models take weather data, holiday information, and historical hourly heat load as input variables. The performance of these algorithms is compared using different training sample sizes of the dataset. The results show that boosting algorithms, particularly XGBoost, are more suitable ML algorithms with lower prediction errors than SVR and MLP. Finally, different explainable artificial intelligence approaches are applied to provide an in-depth interpretation of the trained model and the importance of input variables.

6.
Sci Rep ; 12(1): 9165, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655078

RESUMO

Heat usage patterns, which are greatly affected by the users' behaviors, network performances, and control logic, are a crucial indicator of the effective and efficient management of district heating networks. The variations in the heat load can be daily or seasonal. The daily variations are primarily influenced by the customers' social behaviors, whereas the seasonal variations are mainly caused by the large temperature differences between the seasons over the year. Irregular heat load patterns can significantly raise costs due to pricey peak fuels and increased peak heat load capacities. The in-depth analyses of heat load profiles are regrettably quite rare and small-scale up until now. Therefore, this study offers a comprehensive investigation of a district heating network operation in order to exploit the major features of the heat usage patterns and discover the big factors that affect the heat load patterns. In addition, this study also provides detailed explanations of the features that can be considered the main drivers of the users' heat load demand. Finally, two primary daily heat usage patterns are extracted, which are exploited to efficiently train the prediction model.


Assuntos
Temperatura Corporal , Temperatura Alta , Calefação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA