Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 132(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30745340

RESUMO

The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Neurônios Motores/fisiologia , Complexos Multiproteicos/metabolismo , Mutação/genética , RNA Nuclear/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intranuclear , Camundongos , Fator de Processamento Associado a PTB/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nuclear/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos
2.
Brain ; 140(1): 13-26, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497493

RESUMO

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are two ends of a phenotypic spectrum of disabling, relentlessly progressive and ultimately fatal diseases. A key characteristic of both conditions is the presence of TDP-43 (encoded by TARDBP) or FUS immunoreactive cytoplasmic inclusions in neuronal and glial cells. This cytoplasmic mislocalization of otherwise predominantly nuclear RNA binding proteins implies a perturbation of the nucleocytoplasmic shuttling as a possible event in the pathogenesis. Compromised nucleocytoplasmic shuttling has recently also been associated with a hexanucleotide repeat expansion mutation in C9orf72, which is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and leads to accumulation of cytoplasmic TDP-43 inclusions. Mutation in C9orf72 may disrupt nucleocytoplasmic shuttling on the level of C9ORF72 protein, the transcribed hexanucleotide repeat RNA, and/or dipeptide repeat proteins translated form the hexanucleotide repeat RNA. These defects of nucleocytoplasmic shuttling may therefore, constitute the common ground of the underlying disease mechanisms in different molecular subtypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.


Assuntos
Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteína C9orf72 , Humanos
3.
J Cell Sci ; 128(22): 4151-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26403203

RESUMO

Aberrant cytoplasmic aggregation of FUS, which is caused by mutations primarily in the C-terminal nuclear localisation signal, is associated with 3% of cases of familial amyotrophic lateral sclerosis (ALS). FUS aggregates are also pathognomonic for 10% of all frontotemporal lobar degeneration (FTLD) cases; however, these cases are not associated with mutations in the gene encoding FUS. This suggests that there are differences in the mechanisms that drive inclusion formation of FUS in ALS and FTLD. Here, we show that the C-terminal tyrosine residue at position 526 of FUS is crucial for normal nuclear import. This tyrosine is subjected to phosphorylation, which reduces interaction with transportin 1 and might consequentially affect the transport of FUS into the nucleus. Furthermore, we show that this phosphorylation can occur through the activity of the Src family of kinases. Our study implicates phosphorylation as an additional mechanism by which nuclear transport of FUS might be regulated and potentially perturbed in ALS and FTLD.


Assuntos
Proteína FUS de Ligação a RNA/metabolismo , Tirosina/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Tirosina/genética , beta Carioferinas/metabolismo
4.
J Mol Neurosci ; 62(3-4): 318-328, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28620838

RESUMO

Degeneration of distal axons and neuromuscular junctions is an early feature in the pathology of amyotrophic lateral sclerosis (ALS), which culminates in motor neuron loss due to axon retraction and muscle atrophy. The complex interactions in the pathogenesis of ALS between motor neurons, muscle cells and accompanying glia require an appropriate experimental model. Here, we have defined a co-culture model based on human myotubes innervated by neurons from embryonic rat spinal cord explants to investigate the pathology and treatment of ALS. This model was first characterised for endogenous expression and distribution of ALS-related proteins TDP-43 and FUS. Then, wild-type FUS and its mutants were introduced into these co-cultures to determine how FUS defects in nuclear transport modulate the pathological conditions. FUS-bearing plasmids were introduced by classical transfection and electroporation, as novel approaches to deliver plasmids into explants, and their cellular distributions were characterised. Endogenous nuclear expression of TDP-43 and FUS was observed in explants and myoblasts/myotubes. After transfection, wild-type FUS was expressed in nuclei of myoblasts, myotubes and explants, although with low transfection rates. Following successful electrotransfection into explants, the localisation of wild-type FUS was nuclear, and it was detected in neurons, astrocytes, Schwann cells and oligodendrocyte precursors, whereas the FUS∆Y, FUSY526A and FUSY526E mutants were cytoplasmic, and the FUSY526F mutant was nuclear and cytoplasmic. This co-culture model is applicable to the study of neuronal and non-neuronal cell contributions to ALS and other neurodegenerative diseases, and it can be used to investigate drug targets amenable to intervention.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Humanos , Neurônios/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA