Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cell ; 179(1): 282-282.e1, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539497

RESUMO

The RNA exosome is a 3' to 5' ribonuclease that plays a fundamental role in maturation, quality control, and turnover of nearly all types of RNA produced in eukaryotic cells. Here, we present an overview of the structure, composition, and functions of the RNA exosome, including various cytoplasmic and nuclear exosome co-factors and associated protein complexes. To view this SnapShot, open or download the PDF.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , RNA Helicases/metabolismo , Estabilidade de RNA
2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782132

RESUMO

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , Poliadenilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 42(6): 3943-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371276

RESUMO

Errors in protein synthesis due to mispairing of amino acids with tRNAs jeopardize cell viability. Several checkpoints to prevent formation of Ala- and Cys-tRNA(Pro) have been described, including the Ala-specific editing domain (INS) of most bacterial prolyl-tRNA synthetases (ProRSs) and an autonomous single-domain INS homolog, YbaK, which clears Cys-tRNA(Pro) in trans. In many species where ProRS lacks an INS domain, ProXp-ala, another single-domain INS-like protein, is responsible for editing Ala-tRNA(Pro). Although the amino acid specificity of these editing domains has been established, the role of tRNA sequence elements in substrate selection has not been investigated in detail. Critical recognition elements for aminoacylation by bacterial ProRS include acceptor stem elements G72/A73 and anticodon bases G35/G36. Here, we show that ProXp-ala and INS require these same acceptor stem and anticodon elements, respectively, whereas YbaK lacks inherent tRNA specificity. Thus, these three related domains use divergent approaches to recognize tRNAs and prevent mistranslation. Whereas some editing domains have borrowed aspects of tRNA recognition from the parent aminoacyl-tRNA synthetase, relaxed tRNA specificity leading to semi-promiscuous editing may offer advantages to cells.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Prolina/metabolismo , Alanina/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/classificação , Anticódon , Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Estrutura Terciária de Proteína , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Prolina/química
4.
J Biol Chem ; 287(5): 3175-84, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22128149

RESUMO

Aminoacyl-tRNA synthetases catalyze the covalent attachment of amino acids onto their cognate tRNAs. High fidelity in this reaction is crucial to the accurate decoding of genetic information and is ensured, in part, by proofreading of the newly synthesized aminoacyl-tRNAs. Prolyl-tRNA synthetases (ProRS) mischarge tRNA(Pro) with alanine or cysteine due to their smaller or similar sizes relative to cognate proline. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) present in most bacterial ProRSs. In contrast, the INS domain is unable to deacylate Cys-tRNA(Pro), which is hydrolyzed exclusively by a freestanding trans-editing domain known as YbaK. Here, we have used computational and experimental approaches to probe the molecular basis of INS domain alanine specificity. We show that the methyl side chain of alanine binds in a well defined hydrophobic pocket characterized by conserved residues Ile-263, Leu-266, and Lys-279 and partially conserved residue Thr-277 in Escherichia coli ProRS. Site-specific mutation of these residues leads to a significant loss in Ala-tRNA(Pro) hydrolysis, and altering the size of the pocket modulates the substrate specificity. Remarkably, one ProRS INS domain variant displays a complete switch in substrate specificity from alanine to cysteine. The mutually exclusive aminoacyl-tRNA substrate specificities of the WT and engineered INS domains is consistent with the evolution of two distinct editing domains that function to clear Ala-tRNA(Pro) and Cys-tRNA(Pro) in vivo.


Assuntos
Aminoacil-tRNA Sintetases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Evolução Molecular , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Enterococcus faecalis/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
5.
J Biol Chem ; 286(36): 31810-20, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768119

RESUMO

Aminoacyl-tRNA synthetases attach specific amino acids to cognate tRNAs. Prolyl-tRNA synthetases are known to mischarge tRNA(Pro) with the smaller amino acid alanine and with cysteine, which is the same size as proline. Quality control in proline codon translation is partly ensured by an editing domain (INS) present in most bacterial prolyl-tRNA synthetases that hydrolyzes smaller Ala-tRNA(Pro) and excludes Pro-tRNA(Pro). In contrast, Cys-tRNA(Pro) is cleared by a freestanding INS domain homolog, YbaK. Here, we have investigated the molecular mechanism of catalysis and substrate recognition by Hemophilus influenzae YbaK using site-directed mutagenesis, enzymatic assays of isosteric substrates and functional group analogs, and computational modeling. These studies together with mass spectrometric characterization of the YbaK-catalyzed reaction products support a novel substrate-assisted mechanism of Cys-tRNA(Pro) deacylation that prevents nonspecific Pro-tRNA(Pro) hydrolysis. Collectively, we propose that the INS and YbaK domains co-evolved distinct mechanisms involving steric exclusion and thiol-specific chemistry, respectively, to ensure accurate decoding of proline codons.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Códon , Haemophilus influenzae/genética , Prolina/genética , Biossíntese de Proteínas , Acilação , Biocatálise , Catálise , Hidrólise , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Aminoacil-RNA de Transferência , Especificidade por Substrato
6.
Elife ; 62017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28742025

RESUMO

Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome. Mpp6-exosomes can recruit Mtr4, while Mpp6 and Rrp47 each contribute to Mtr4-dependent RNA decay, with maximal Mtr4-dependent decay observed with both cofactors. The 3.3 Å structure of a twelve-subunit nuclear Mpp6 exosome bound to RNA shows the central region of Mpp6 bound to the exosome core, positioning its Mtr4 recruitment domain next to Rrp6 and the exosome central channel. Genetic analysis reveals interactions that are largely consistent with our model.


Assuntos
RNA Helicases DEAD-box/metabolismo , Exossomos/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
J Phys Chem B ; 117(16): 4521-7, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23185990

RESUMO

Amino acids are covalently attached to their corresponding transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases. Proofreading mechanisms exist to ensure that high fidelity is maintained in this key step in protein synthesis. Prolyl-tRNA synthetase (ProRS) can misacylate cognate tRNA(Pro) with Ala and Cys. The cis-editing domain of ProRS (INS) hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is hydrolyzed by a single domain editing protein, YbaK, in trans. Previous studies have proposed a model of substrate-binding by bacterial YbaK and elucidated a substrate-assisted mechanism of catalysis. However, the microscopic steps in this mechanism have not been investigated. In this work, we carried out biochemical experiments together with a detailed hybrid quantum mechanics/molecular mechanics study to investigate the mechanism of catalysis by Escherichia coli YbaK. The results support a mechanism wherein cyclization of the substrate Cys results in cleavage of the Cys-tRNA ester bond. Protein side chains do not play a significant role in YbaK catalysis. Instead, protein backbone atoms play crucial roles in stabilizing the transition state, while the product is stabilized by the 2'-OH of the tRNA.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Biocatálise , Domínio Catalítico , Ciclização , Cisteína/química , Cisteína/metabolismo , Escherichia coli/metabolismo , Hidrólise , Isomerismo , Modelos Moleculares , Biossíntese de Proteínas , Teoria Quântica , Aminoacil-RNA de Transferência/química , Especificidade por Substrato
8.
J Phys Chem B ; 116(23): 6991-9, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22458656

RESUMO

Aminoacyl-tRNA synthetases activate specific amino acid substrates and attach them via an ester linkage to cognate tRNA molecules. In addition to cognate proline, prolyl-tRNA synthetase (ProRS) can activate cysteine and alanine and misacylate tRNA(Pro). Editing of the misacylated aminoacyl-tRNA is required for error-free protein synthesis. An editing domain (INS) appended to bacterial ProRS selectively hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is cleared by a freestanding editing domain, YbaK, through a unique mechanism involving substrate sulfhydryl chemistry. The detailed mechanism of catalysis by INS is currently unknown. To understand the alanine specificity and mechanism of catalysis by INS, we have explored several possible mechanisms of Ala-tRNA(Pro) deacylation via hybrid QM/MM calculations. Experimental studies were also performed to test the role of several residues in the INS active site as well as various substrate functional groups in catalysis. Our results support a critical role for the tRNA 2'-OH group in substrate binding and catalytic water activation. A role is also proposed for the protein's conserved GXXXP loop in transition state stabilization and for the main chain atoms of Gly261 in a proton relay that contributes substantially to catalysis.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Enterococcus faecalis/enzimologia , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/isolamento & purificação , Modelos Moleculares , Controle de Qualidade , Teoria Quântica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA