Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(9): 3287-3301, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33410159

RESUMO

There has been increasing momentum recently in the biopharmaceutical industry to transition from traditional batch processes to next-generation integrated and continuous biomanufacturing. This transition from batch to continuous is expected to offer several advantages which, taken together, could significantly improve access to biologics drugs for patients. Despite this recent momentum, there has not been a commercial implementation of a continuous bioprocess reported in the literature. In this study, we describe a successful pilot-scale proof-of-concept demonstration of an end-to-end integrated and continuous bioprocess for the production of a monoclonal antibody (mAb). This process incorporated all of the key unit operations found in a typical mAb production process, including the final steps of virus removal filtration, ultrafiltration, diafiltration, and formulation. The end-to-end integrated process was operated for a total of 25 days and produced a total of 4.9 kg (200 g/day or 2 g/L BRX/day) of the drug substance from a 100-L perfusion bioreactor (BRX) with acceptable product quality and minimal operator intervention. This successful proof-of-concept demonstrates that end-to-end integrated continuous bioprocessing is achievable with current technologies and represents an important step toward the realization of a commercial integrated and continuous bioprocessing process.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Imunoglobulina G , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Biotecnologia , Células CHO , Cricetulus , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação
2.
Langmuir ; 35(27): 9071-9083, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184900

RESUMO

In this work, contributions of extracellular polymeric substances (EPS) to the nanoscale mechanisms through which the multidrug-resistant Acinetobacter baumannii responds to antimicrobial and hyperosmotic treatments were investigated by atomic force microscopy. Specifically, the adhesion strengths to a control surface of silicon nitride (Si3N4) and the lengths of bacterial surface biopolymers of bound and loose EPS extracted from A. baumannii biofilms were quantified after individual or synergistic treatments with hyperosmotic agents (NaCl and maltodextrin) and an antibiotic (tobramycin). In the absence of any treatment, the loose EPS were significantly longer in length and higher in adhesion to Si3N4 than the bound EPS. When used individually, the hyperosmotic agents and tobramycin collapsed the A. baumannii bound and loose EPS. The combined treatment of maltodextrin with tobramycin collapsed only the loose EPS and did not alter the adhesion of both bound and loose EPS to Si3N4. In addition, the combined treatment was not as effective in collapsing the EPS molecules as when tobramycin was applied alone. Finally, the effects of treatments were dose-dependent. Altogether, our findings suggest that a sequential treatment could be effective in treating A. baumannii biofilms, in which a hyperosmotic agent is used first to collapse the EPS and limit the diffusion of nutrients into the biofilm, followed by the use of an antibiotic to kill the bacterial cells that escape from the biofilm because of starvation.

3.
Biotechnol Bioeng ; 112(5): 858-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25421463

RESUMO

We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/fisiologia , Biofilmes/crescimento & desenvolvimento , Eletrodos , Transporte de Elétrons , Desenho de Equipamento , Grafite/química , Transporte de Íons , Oxirredução , Cloreto de Sódio/metabolismo
4.
Antimicrob Agents Chemother ; 58(8): 4755-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913166

RESUMO

We investigated biofilms of two pathogens, Acinetobacter baumannii and Staphylococcus aureus, to characterize mechanisms by which the extracellular polymeric substance (EPS) found in biofilms can protect bacteria against tobramycin exposure. To do so, it is critical to study EPS-antibiotic interactions in a homogeneous environment without mass transfer limitations. Consequently, we developed a method to grow biofilms, harvest EPS, and then augment planktonic cultures with isolated EPS and tobramycin. We demonstrated that planktonic cultures respond differently to being treated with different types of EPS (A. baumannii versus S. aureus) in the presence of tobramycin. By harvesting EPS from the biofilms, we found that A. baumannii EPS acts as a "universal protector" by inhibiting tobramycin activity against bacterial cells regardless of species; S. aureus EPS did not show any protective ability in cell cultures. Adding Mg(2+) or Ca(2+) reduced the protective effect of A. baumannii EPS. Finally, when we selectively digested the proteins or DNA of the EPS, we found that the protective ability did not change, suggesting that neither has a significant role in protection. To the best of our knowledge, this is the first study that demonstrates how EPS protects pathogens against antibiotics in a homogeneous system without mass transfer limitations. Our results suggest that EPS protects biofilm communities, in part, by adsorbing antibiotics near the surface. This may limit antibiotic diffusion to the bottom of the biofilms but is not likely to be the only mechanism of protection.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/farmacologia , Acinetobacter baumannii/química , Acinetobacter baumannii/crescimento & desenvolvimento , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Biofilmes/crescimento & desenvolvimento , Cálcio/farmacologia , Cátions Bivalentes , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , DNA Bacteriano/farmacologia , Magnésio/farmacologia , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/farmacologia , Staphylococcus aureus/química , Staphylococcus aureus/crescimento & desenvolvimento , Tobramicina/antagonistas & inibidores
5.
J Biol Chem ; 285(27): 20558-63, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20430888

RESUMO

Class II diterpene cyclases mediate the acid-initiated cycloisomerization reaction that serves as the committed step in biosynthesis of the large class of labdane-related diterpenoid natural products, which includes the important gibberellin plant hormones. Intriguingly, these enzymes are differentially susceptible to inhibition by their Mg(2+) cofactor, with those involved in gibberellin biosynthesis being more sensitive to such inhibition than those devoted to secondary metabolism, which presumably limits flux toward the potent gibberellin phytohormones. Such inhibition has been suggested to arise from intrasteric Mg(2+) binding to the DXDD motif that cooperatively acts as the catalytic acid, whose affinity must then be modulated in some fashion. While further investigating class II diterpene cyclase catalysis, we discovered a conserved basic residue that seems to act as a counter ion to the DXDD motif, enhancing the ability of aspartic acid to carry out the requisite energetically difficult protonation of a carbon-carbon double bond and also affecting inhibitory Mg(2+) binding. Notably, this residue is conserved as a histidine in enzymes involved in gibberellin biosynthesis and as an arginine in those dedicated to secondary metabolism. Interchanging the identity of these residues is sufficient to switch the sensitivity of the parent enzyme to inhibition by Mg(2+). These striking findings indicate that this is a single residue switch for Mg(2+) inhibition, which not only supports the importance of this biochemical regulatory mechanism in limiting gibberellin biosynthesis, but the importance of its release, presumably to enable higher flux, into secondary metabolism.


Assuntos
Diterpenos/metabolismo , Magnésio/farmacologia , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Plantas/metabolismo , Substituição de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Arginina/metabolismo , Histidina/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/genética , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Plastídeos/efeitos dos fármacos , Plastídeos/metabolismo , Fosfatos de Poli-Isoprenil/química
6.
Front Microbiol ; 3: 368, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23091471

RESUMO

Terpenoid metabolites are important to the cellular function, structural integrity, and pathogenesis of the human-specific pathogen Mycobacterium tuberculosis (Mtb). Genetic and biochemical investigations have indicated a role for the diterpenoid isotuberculosinol (isoTb) early in the infection process. There are only two genes (Rv3377c and Rv3378c) required for production of isoTb, yet these are found in what appears to be a five-gene terpenoid/isoprenoid biosynthetic operon. Of the three remaining genes (Rv3379c, Rv3382c, and Rv3383c), previous work has indicated that Rv3379c is an inactive pseudo-gene. Here we demonstrate that Rv3382c and Rv3383c encode biochemically redundant machinery for isoprenoid metabolism, encoding a functional 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB) for isoprenoid precursor production and a geranylgeranyl diphosphate (GGPP) synthase, respectively, for which the Mtb genome contains other functional isozymes (Rv1110 and Rv0562, respectively). These results complete the characterization of the isoTb biosynthetic operon, as well as further elucidating isoprenoid metabolism in Mtb. In addition, we have investigated the evolutionary origin of this operon, revealing Mtb-specific conservation of the diterpene synthase genes responsible for isoTb biosynthesis, which supports our previously advanced hypothesis that isoTb acts as a human-specific pathogenic metabolite and is consistent with the human host specificity of Mtb. Intriguingly, our results revealed that many mycobacteria contain orthologs for both Rv3383c and Rv0562, suggesting a potentially important role for these functionally redundant GGPP synthases in the evolution of terpenoid/isoprenoid metabolism in the mycobacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA