Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Bioanal Chem ; 412(6): 1441-1451, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31950238

RESUMO

A prior method of mass labeling ketone-/aldehyde-containing species in natural dissolved organic matter (DOM) is further developed and applied. This application involved the treatment of Suwannee River fulvic acid (SRFA) with increasing concentrations of sodium borodeuteride (NaBD4), followed by detection of reduced species via negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). The extent of reduction, as determined by ESI FTICR MS, resulting from increasing concentrations of NaBD4 correlated well with changes in the absorption and emission spectra of the corresponding untreated and borodeuteride-reduced samples, providing evidence that ketone/aldehyde functional groups contribute substantially to the bulk optical properties of SRFA. Furthermore, the differences in the reactivity and abundance of ketone-/aldehyde-containing species for various regions in Van Krevelen plots were revealed, thus showing how this mass labeling method can be used to provide more detailed structural information about components within complex DOM samples than that provided by the determination and analysis of molecular formulae alone. Graphical abstract.

2.
Environ Sci Technol ; 53(11): 6310-6319, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31063364

RESUMO

The combined effects of pH and borohydride reduction on the optical properties of a series of humic substances and a lignin model were examined to probe the molecular moieties and interactions that give rise to the observed optical properties of these materials. Increasing the pH from 2 to 12 produced significantly enhanced absorption across the spectra of all samples, with distinct spectral responses observed over pH ranges attributable to the deprotonation of carboxylic acids and phenols. Borohydride reduction substantially attenuated the broadband absorption enhancements with pH, clearly indicating that the loss of absorption due to ketone/aldehyde reduction is coupled with the pH-dependent increase in absorption due to deprotonation of carboxylic acids and phenols. These results cannot be easily explained by a superposition of the spectra of independently absorbing chromophores (superposition model) but are readily interpretable within a charge transfer (CT) model. Changes of fluorescence emission with pH for both untreated and borohydride reduced samples suggest that a pH-dependent structural reorganization of the HS may also be influencing the fluorescence emission. Independent of optical model, these results demonstrate that chemical tests targeted to specific moieties can identify distinct structural differences among HS sources as well as provide insight into the molecular moieties and interactions that produce the observed optical and photochemical properties.


Assuntos
Aldeídos , Substâncias Húmicas , Boroidretos , Concentração de Íons de Hidrogênio , Cetonas
3.
Environ Sci Technol ; 51(23): 13624-13632, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29125750

RESUMO

The molecular basis of the optical properties of chromophoric dissolved organic matter (CDOM) and humic substances (HS) remains poorly understood and yet to be investigated adequately. This study evaluates the relative contributions of two broad classes of carbonyl-containing compounds, ketones/aldehydes versus quinones, to the absorption and emission properties of a representative suite of HS as well as a lignin sample. Selective reduction of quinones to hydroquinones by addition of small molar excesses of dithionite to these samples under anoxic conditions produced small or negligible changes in their optical properties; however, when measurable, these changes were largely reversible upon exposure to air, consistent with the reoxidation of hydroquinones to quinones. With one exception, estimates of quinone content based on dithionite consumption by the HS under anoxic conditions were in good agreement with past electrochemical measurements. In contrast, reduction of ketones/aldehydes to alcohols employing excess sodium borohydride produced pronounced and largely, but not completely, irreversible changes in the optical properties. The results demonstrate that (aromatic) ketones/aldehydes, as opposed to quinones, play a far more prominent role in the optical absorption and emission properties of these HS, consistent with these moieties acting as the primary acceptors in charge-transfer transitions within these samples. As a method, anoxic dithionite titrations may further allow additional insight into the content and impact of quinones/hydroquinones on the optical properties of HS and CDOM.


Assuntos
Substâncias Húmicas , Quinonas , Álcoois , Aldeídos , Cetonas , Poluentes da Água
4.
Environ Sci Technol ; 48(21): 12679-88, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25288017

RESUMO

Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.


Assuntos
Elétrons , Substâncias Húmicas/análise , Peróxido de Hidrogênio/química , Fenol/química , Processos Fotoquímicos , Cresóis/química , Cetonas/química , Cinética , Análise dos Mínimos Quadrados , Luz , Oxirredução , Oxigênio/química , Teoria Quântica , Rios/química
6.
Environ Sci Technol ; 47(17): 9891-7, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23915388

RESUMO

The mass spectra acquired by ESI FT-ICR MS of untreated, borohydride-reduced, and borodeuteride-reduced samples of Suwannee River fulvic acid (SRFA) and a C18 extract from the upper Delaware Bay were compared to one another. Treatment of these samples with sodium borodeuteride was shown to produce unique mass labels for species which contain one or two ketone/aldehyde moieties. Approximately 30% of all identified peaks in the two samples were shown to comprise ketone/aldehyde-containing species. The molecular formulas of the majority of these species had O/C and H/C molar ratios typically attributed to lignin-derived compounds and/or carboxylic rich alicyclic molecules (CRAM). However, the significant loss of UV-vis absorption following reduction supports a lignin-based origin for the optical (and photochemical) properties of these samples. The mass-labeling method described and tested herein shows great promise as a means to further characterize the structure and composition of complex natural samples, especially in terms of identifying specific subsets of chemical species that contribute significantly to the optical and photochemical properties of such samples.


Assuntos
Benzopiranos/química , Boroidretos/química , Monitoramento Ambiental/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes Químicos da Água/química , Álcoois/química , Aldeídos/química , Cetonas/química , Oxirredução
7.
Environ Sci Technol ; 46(21): 11836-43, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23046212

RESUMO

The mechanism(s) by which hydrogen peroxide (H(2)O(2)) is photoproduced by humic substances and chromophoric dissolved organic matter was probed by examining the dependence of the initial H(2)O(2) photoproduction rate (R(H(2)O(2))) and apparent H(2)O(2) quantum yields on dioxygen concentration for both untreated and borohydride-reduced samples. Although borohydride reduction substantially reduced light absorption, the R(H(2)O(2)) values were largely unaffected. Apparent monochromatic and polychromatic quantum yields thus increased following reduction. The results indicate that light absorption by charge-transfer states or by (aromatic) ketone/aldehydes does not lead to significant H(2)O(2) photoproduction. High concentrations of triplet quenchers relative to that of dioxygen produced only small decreases (sorbic acid) or small increases (Cl(-) and Br(-)) in R(H(2)O(2)), indicating that neither (1)O(2) nor excited triplet states of quinones contribute significantly to H(2)O(2) photoproduction. The dependence of R(H(2)O(2)) on O(2) concentration provides evidence that the intermediate(s) reacting with O(2) to produce superoxide are relatively long-lived (approximately tens of microseconds or more). Evidence of the photochemical formation of O(2)-reducing intermediates under anaerobic conditions was also obtained; these reducing intermediates appeared to be relatively stable in the absence of O(2). Our data suggest that these O(2)-reducing intermediates are generated by intramolecular electron transfer from short-lived excited states of electron donors to ground-state acceptors.


Assuntos
Benzopiranos/efeitos da radiação , Substâncias Húmicas/efeitos da radiação , Peróxido de Hidrogênio/análise , Raios Ultravioleta , Boroidretos/química , Água Doce , Oxirredução , Oxigênio/química
8.
Environ Sci Technol ; 46(7): 3912-20, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22394372

RESUMO

To probe the mechanism of the photosensitized loss of phenols by humic substances (HS), the dependence of the initial rate of 2,4,6-trimethylphenol (TMP) loss (R(TMP)) on dioxygen concentration was examined both for a variety of untreated as well as borohydride-reduced HS and C(18) extracts from the Delaware Bay and Mid-Atlantic Bight. R(TMP) was inversely proportional to dioxygen concentration at [O(2)] > 50 µM, a dependence consistent with reaction with triplet excited states, but not with (1)O(2) or RO(2). Modeling the dependence of R(TMP) on [O(2)] provided rate constants for TMP reaction, O(2) quenching, and lifetimes compatible with a triplet intermediate. Borohydride reduction significantly reduced TMP loss, supporting the role of aromatic ketone triplets in this process. However, for most samples, the incomplete loss of sensitization following borohydride reduction, as well as the inverse dependence of R(TMP) on [O(2)] for these samples, suggests that there remains another class of oxidizing triplet sensitizer, perhaps quinones.


Assuntos
Cresóis/química , Cresóis/efeitos da radiação , Substâncias Húmicas/análise , Luz , Fotoquímica/métodos , Absorção/efeitos da radiação , Benzopiranos/química , Boroidretos , Cinética , Lignina/química , Modelos Químicos , Oxirredução/efeitos da radiação , Oxigênio/química , Rios/química , Análise Espectral
10.
Front Chem ; 4: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904536

RESUMO

Some properties of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) can be easily measured directly on whole waters, while others require sample concentration and removal of natural salts. To increase CDOM content and eliminate salts, solid phase extraction (SPE) is often employed. Biases following extraction and elution are inevitable, thus raising the question of how truly representative the extracted material is of the original. In this context, we investigated the wavelength dependence of extraction efficiency for C18 cartridges with respect to CDOM optical properties using samples obtained from the Middle Atlantic Bight (MAB) and the Equatorial Atlantic Ocean (EAO). Further, we compared the optical changes of C18 extracts and the corresponding whole water following chemical reduction with sodium borohydride (NaBH4). C18 cartridges preferentially extracted long-wavelength absorbing/emitting material for samples impacted by riverine input. Extraction efficiency overall decreased with offshore distance away from riverine input. Spectral slopes of C18-OM samples were also almost always lower than those of their corresponding CDOM samples supporting the preferential extraction of higher molecular weight absorbing material. The wavelength dependence of the optical properties (absorption, fluorescence emission, and quantum yield) of the original water samples and their corresponding extracted material were very similar. C18 extracts and corresponding water samples further exhibited comparable optical changes following NaBH4 reduction, thus suggesting a similarity in nature (structure) of the optically active extracted material, independent of geographical locale. Altogether, these data suggested a strong similarity between C18 extracts and corresponding whole waters, thus indicating that extracts are representative of the CDOM content of original waters.

11.
Photochem Photobiol ; 80: 52-60, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15339217

RESUMO

Light absorption by chromophoric dissolved organic matter (CDOM) plays a number of roles in natural waters, including both control of the underwater light field and the initiation of many photochemical reactions. A multicomponent analysis was used to describe the effects of UV and visible radiation on the optical absorption spectra of two natural water samples, a Suwannee River fulvic acid standard (SRFA) and a Delaware Bay water sample. This analysis used a constrained minimization technique to fit independent spectral components to the observed bleaching behavior of the water samples under monochromatic irradiation. Spectra derived from these fits were used to predict the bleaching behavior of both samples under polychromatic irradiation (lambda > 320 nm). This approach reproduces the kinetics and spectral behavior of polychromatic photobleaching very well at times <48 h, but underpredicts the bleaching at longer time periods.


Assuntos
Compostos Orgânicos/química , Compostos Orgânicos/efeitos da radiação , Raios Ultravioleta , Luz
12.
Environ Sci Technol ; 44(14): 5395-402, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20557095

RESUMO

Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.


Assuntos
Boroidretos/química , Substâncias Húmicas/análise , Rios/química , Eletroquímica , Poluentes da Água/química
13.
Environ Sci Technol ; 43(7): 2262-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452872

RESUMO

The spectral dependencies of absorption and fluorescence emission (emission maxima (lamdamax), quantum yields (phi), and mean lifetimes (taum)) were acquired for a commercial lignin, Suwannee River humic (SRHA) and fulvic (SRFA) acids, and a series solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts). These parameters were compared with the relative average size and total lignin phenol content (TLP). TLP was strongly correlated with absorption at 280 and 355 nm for the MAB extracts, SRHA, and SRFA. The spectral dependence of lamdamax, phi), and taum was very similar for all samples, suggesting a common photophysical and thus structural basis. A strong decrease of phi and taum with increasing average size indicates that intramolecular interactions must be important. When combined with previous work, the results lead us to conclude that the optical properties commonly associated with terrestrial humic substances and chromophoric dissolved organic matter arise primarily from an ensemble of partially oxidized lignins derived from vascular plant sources. Theyfurther provide additional support for an electronic interaction model in which intramolecular energy transfer, excited-state electron transfer, as well as charge transfer likely play important roles in producing the observed optical and photochemical properties of these materials.


Assuntos
Substâncias Húmicas , Cromatografia em Gel , Espectrofotometria Ultravioleta
14.
Environ Sci Technol ; 38(14): 3885-91, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15298197

RESUMO

Absorption and fluorescence spectroscopy and laser photobleaching experiments were employed to probe the origins of the optical properties of humic substances (HS). Luminescence quantum yields and the wavelengths of maximum emission were acquired for Suwannee River humic acid (SRHA) and fulvic acid (SRFA) at an extensive series of excitation wavelengths across the ultraviolet and visible. Laser irradiation at a series wavelength across the ultraviolet and visible was further employed to destroy selectively chromophores absorbing at specific wavelengths, using absorption spectroscopy to follow the absorption losses with irradiation time. The results provide unequivocal evidence that the absorption and emission spectra of these materials cannot result solely from a simple linear superposition of the spectra of numerous independent chromophores. Instead, the long wavelength absorption tail of HS (>350 nm) appears to arise from a continuum of coupled states. We propose that this behavior results from intramolecular charge-transfer interactions between hydroxy-aromatic donors and quinoid acceptors formed by the partial oxidation of lignin precursors. We further propose that these donor-acceptor interactions may be a common phenomenon, occurring within all natural hydroxy- or polyhydroxy-aromatic polymers that form appropriate acceptors upon partial oxidation. Examples of such species include lignin, polyphenols, tannins, and melanins.


Assuntos
Benzopiranos/análise , Substâncias Húmicas/análise , Absorção , Benzopiranos/efeitos da radiação , Substâncias Húmicas/efeitos da radiação , Medições Luminescentes , Fotodegradação , Rios/química , Espectrofotometria Ultravioleta , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA