Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 164: 309-324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147427

RESUMO

Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001 - 2010. Annual baseline CO exhibited statistically significant decreasing trends (-4.3 - -2.3 ppbv yr-1), while baseline O3 did not display trends at any site. In examining the data by season, wintertime and springtime baseline CO at the two highest sites (1.5 km and 2 km asl) did not experience significant trends. Decadal increasing trends (~2.55 ppbv yr-1) were found in springtime and wintertime baseline O3 in southern New Hampshire, which was associated with anthropogenic NOx emission reductions from the urban corridor. Biomass burning emissions impacted summertime baseline CO with ~38% variability from wildfire emissions in Russia and ~22% from Canada at five sites and impacted baseline O3 at the two high elevation sites only with ~27% variability from wildfires in both Russia and Canada. The Arctic Oscillation was negatively correlated with summertime baseline O3, while the North Atlantic Oscillation was positively correlated with springtime baseline O3. This study suggested that anthropogenic and biomass burning emissions, and meteorological conditions were important factors working together to determine baseline O3 and CO in the Northeast U.S. during the 2000s.

2.
Science ; 175(4023): 751-2, 1972 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-17836132

RESUMO

The rates of formaldehyde photodecomposition into hydrogen and formyl radicals and hydrogen and carbon monoxide molecules in sunlightirradiated atmospheres have been estimated from extinction data and photochemical results. These data should prove useful in the development of models for the chemical changes that take place in the polluted atmosphere.

3.
Science ; 326(5959): 1525-9, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007897

RESUMO

Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA