Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 22(4): 743-753, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33030752

RESUMO

Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Cisteína/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteoma/análise , Proteoma/metabolismo , Cisteína/metabolismo , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/química
2.
Chemistry ; 26(58): 13249-13255, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428298

RESUMO

Human histone deacetylase 8 is a well-recognized target for T-cell lymphoma and particularly childhood neuroblastoma. PD-404,182 was shown to be a selective covalent inhibitor of HDAC8 that forms mixed disulfides with several cysteine residues and is also able to transform thiol groups to thiocyanates. Moreover, HDAC8 was shown to be regulated by a redox switch based on the reversible formation of a disulfide bond between cysteines Cys102 and Cys153 . This study on the distinct effects of PD-404,182 on HDAC8 reveals that this compound induces the dose-dependent formation of intramolecular disulfide bridges. Therefore, the inhibition mechanism of HDAC8 by PD-404,182 involves both, covalent modification of thiols as well as ligand mediated disulfide formation. Moreover, this study provides a deep molecular insight into the regulation mechanism of HDAC8 involving several cysteines with graduated capability to form reversible disulfide bridges.

3.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113354

RESUMO

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Sítios de Ligação , Espectrometria de Massas em Tandem , Ligantes , Proteínas Repressoras/metabolismo
4.
ACS Omega ; 8(42): 39562-39569, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901533

RESUMO

Membranes provide a highly selective barrier that defines the boundaries of any cell while providing an interface for communication and nutrient uptake. However, despite their central physiological role, our capacity to study or even engineer the permeation of distinct solutes across biological membranes remains rudimentary. This especially applies to Gram-negative bacteria, where the outer and inner membrane impose two permeation barriers. Addressing this analytical challenge, we exemplify how the permeability of the Escherichia coli cell envelope can be dissected using a small-molecule-responsive fluorescent protein sensor. The approach is exemplified for the biotechnologically relevant macrolide rapamycin, for which we first construct an intensiometric rapamycin detector (iRapTor) while comprehensively probing key design principles in the iRapTor scaffold. Specifically, this includes the scope of minimal copolymeric linkers as a function of topology and the concomitant need for gate post residues. In a subsequent step, we apply iRapTors to assess the permeability of the E. coli cell envelope to rapamycin. Despite its lipophilic character, rapamycin does not readily diffuse across the E. coli envelope but can be enhanced by recombinantly expressing a nanopore in the outer membrane. Our study thus provides a blueprint for studying and actuating the permeation of small molecules across the prokaryotic cell envelope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA