Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0076623, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38193667

RESUMO

New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Antituberculosos/farmacologia , Isoniazida , Tuberculose/prevenção & controle
2.
Semin Cancer Biol ; 83: 399-412, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33039557

RESUMO

Tumour-promoting inflammation is a critical hallmark in cancer development, and inflammasomes are well-known regulators of inflammatory processes within the tumour microenvironment. Different inflammasome components along with the adaptor, apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC), and the effector, caspase-1, have a significant influence on tumorigenesis but in a tissue-specific and stage-dependent manner. The downstream products of inflammasome activation, that is the proinflammatory cytokines such as IL-1ß and IL-18, regulate tissue homeostasis and induce antitumour immune responses, but in contrast, they can also favour cancer growth and proliferation by directing various oncogenic signalling pathways in cancer cells. Moreover, different epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNAs, control inflammasomes and their components by regulating gene expression during cancer progression. Furthermore, autophagy, a master controller of cellular homeostasis, targets inflammasome-induced carcinogenesis by maintaining cellular homeostasis and removing potential cancer risk factors that promote inflammasome activation in support of tumorigenesis. Here, in this review, we summarize the effect of inflammasome activation in cancers and discuss the role of epigenetic and autophagic regulatory mechanisms in controlling inflammasomes. A proper understanding of the interactions among these key processes will be useful for developing novel therapeutic regimens for targeting inflammasomes in cancer.


Assuntos
Inflamassomos , Neoplasias , Autofagia/genética , Carcinogênese/genética , Epigênese Genética , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Neoplasias/genética , Microambiente Tumoral/genética
3.
Cytokine ; 171: 156366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716189

RESUMO

Cytokine therapy and cytokine-mediated autophagy have been used as prominent host-directed therapy (HDT) approaches to restrain M. tb growth in the host cell. In the present study, we have dissected the anti-tubercular activity of Soybean lectin (SBL) through cytokine-mediated autophagy induction in differentiated THP-1 (dTHP-1) cells. A significant increase in IL-6 expression was observed in both uninfected and mycobacteria infected dTHP-1 cells through the P2RX7 mediated pathway via PI3K/Akt/CREB-dependent signalling after SBL treatment. Inhibition of IL-6 level using IL-6 neutralizing antibody or associated signalling significantly enhanced the mycobacterial load in SBL-treated dTHP-1 cells. Further, autocrine signalling of IL-6 through its receptor-induced Mcl-1 expression activated autophagy via JAK2/STAT3 pathway, and inhibition of this pathway affected autophagy. Finally, blocking the IL-6-regulated autophagy through NSC 33994 (a JAK2 inhibitor) or S63845 (an Mcl-1 inhibitor) led to a notable increase in intracellular mycobacterial growth in SBL-treated cells. Taken together, these results indicate that SBL interacts with P2RX7 to regulate PI3K/Akt/CREB network to release IL-6 in dTHP-1 cells. The released IL-6, in turn, activates the JAK2/STAT3/Mcl-1 pathway upon interaction with IL-6Rα to modulate autophagy that ultimately controls mycobacterial growth in macrophages.


Assuntos
Interleucina-6 , Mycobacterium tuberculosis , Autofagia , Interleucina-6/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Células THP-1 , Humanos
4.
J Cell Physiol ; 237(1): 258-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448206

RESUMO

Evidence accumulated from past findings indicates that defective proteostasis may contribute to risk factors for cancer generation. Irregular assembly of abnormal proteins catalyzes the disturbance of cellular proteostasis and induces the ability of abnormal cellular proliferation. The autophagy mechanism plays a key role in the regular clearance of abnormal/poor lipids, proteins, and various cellular organelles. The results of functional and effective autophagy deliver normal cellular homeostasis, which establishes supportive metabolism and avoids unexpected tumorigenesis events. Still, the precise molecular mechanism of autophagy in tumor suppression has not been clear. How autophagy triggers selective or nonselective bulk degradation to dissipate tumor promotion under stress conditions is not clear. Under proteotoxic insults to knockdown the drive of tumorigenesis, it is critical for us to figure out the detailed molecular functions of autophagy in human cancers. The current article summarizes autophagy-based theragnostic strategies targeting various phases of tumorigenesis and suggests the preventive roles of autophagy against tumor progression. A better understanding of various molecular partners of autophagic flux will improve and innovate therapeutic approaches based on autophagic-susceptible effects against cellular oncogenic transformation.


Assuntos
Autofagia , Neoplasias , Autofagia/genética , Transformação Celular Neoplásica/genética , Humanos , Neoplasias/metabolismo , Oncogenes
5.
Drug Metab Rev ; 53(1): 100-121, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33820460

RESUMO

Ibuprofen is a classical nonsteroidal anti-inflammatory drug (NSAID) highly prescribed to reduce acute pain and inflammation under an array of conditions, including rheumatoid arthritis, osteoarthritis, dysmenorrhea, and gout. Ibuprofen acts as a potential inhibitor for cyclooxygenase enzymes (COX-1 and COX-2). In the past few decades, research on this small molecule has led to identifying other possible therapeutic benefits. Anti-tumorigenic and neuroprotective functions of Ibuprofen are majorly recognized in recent literature and need further consideration. Additionally, several other roles of this anti-inflammatory molecule have been discovered and subjected to experimental assessment in various diseases. However, the major challenge faced by Ibuprofen and other drugs of similar classes is their side effects, and tendency to cause gastrointestinal injury, generate cardiovascular risks, modulate hepatic and acute kidney diseases. Future research should also be conducted to deduce new methods and approaches of suppressing the unwanted toxic changes mediated by these drugs and develop new therapeutic avenues so that these small molecules continue to serve the purposes. This article primarily aims to develop a comprehensive and better understanding of Ibuprofen, its pharmacological features, therapeutic benefits, and possible but less understood medicinal properties apart from major challenges in its future application.KEY POINTSIbuprofen, an NSAID, is a classical anti-inflammatory therapeutic agent.Pro-apoptotic roles of NSAIDs have been explored in detail in the past, holding the key in anti-cancer therapies.Excessive and continuous use of NSAIDs may have several side effects and multiple organ damage.Hyperactivated Inflammation initiates multifold detrimental changes in multiple pathological conditions.Targeting inflammatory pathways hold the key to several therapeutic strategies against many diseases, including cancer, microbial infections, multiple sclerosis, and many other brain diseases.


Assuntos
Artrite Reumatoide , Neoplasias , Osteoartrite , Anti-Inflamatórios não Esteroides/efeitos adversos , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Feminino , Humanos , Ibuprofeno/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico , Osteoartrite/tratamento farmacológico
6.
J Proteome Res ; 19(6): 2316-2336, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407090

RESUMO

Comparative phosphoproteomics of Mycobacterium tuberculosis (Mtb)- and Mycobacterium bovis BCG (BCG)-infected macrophages could be instrumental in understanding the characteristic post-translational modifications of host proteins and their subsequent involvement in determining Mtb pathogenesis. To identify proteins acquiring a distinct phosphorylation status, herein, we compared the phosphorylation profile of macrophages upon exposure to Mtb and BCG. We observed a significant dephosphorylation of proteins following Mtb infection relative to those with uninfected or BCG-infected cells. A comprehensive tandem mass tag mass spectrometry (MS) approach detected ∼10% phosphosites on a variety of host proteins that are modulated in response to infection. Interestingly, the innate immune-enhancing interferon (IFN)-stimulated genes were identified as a class of proteins differentially phosphorylated during infection, including the cytosolic RNA sensor RIG-I, which has been implicated in the immune response to bacterial infection. We show that Mtb infection results in the activation of RIG-I in primary human macrophages. Studies using RIG-I knockout macrophages reveal that the Mtb-mediated activation of RIG-I promotes IFN-ß, IL-1α, and IL-1ß levels, dampens autophagy, and facilitates intracellular Mtb survival. To our knowledge, this is the first study providing exhaustive information on relative and quantitative changes in the global phosphoproteome profile of host macrophages that can be further explored in designing novel anti-TB drug targets. The peptide identification and MS/MS spectra have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013171.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Humanos , Macrófagos , RNA , Espectrometria de Massas em Tandem
7.
Cell Mol Life Sci ; 76(11): 2093-2110, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30826859

RESUMO

Cellular protein quality control (PQC) plays a significant role in the maintenance of cellular homeostasis. Failure of PQC mechanism may lead to various neurodegenerative diseases due to accumulation of aberrant proteins. To avoid such fatal neuronal conditions PQC employs autophagy and ubiquitin proteasome system (UPS) to degrade misfolded proteins. Few quality control (QC) E3 ubiquitin ligases interplay an important role to specifically recognize misfolded proteins for their intracellular degradation. Leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1) is a really interesting new gene (RING) class protein that possesses E3 ubiquitin ligase activity with promising applications in PQC. LRSAM1 is also known as RING finger leucine repeat rich (RIFLE) or TSG 101-associated ligase (TAL). LRSAM1 has various cellular functions as it modulates the protein aggregation, endosomal sorting machinery and virus egress from the cells. Thus, this makes LRSAM1 interesting to study not only in protein conformational disorders such as neurodegeneration but also in immunological and other cancerous disorders. Furthermore, LRSAM1 interacts with both cellular protein degradation machineries and hence it can participate in maintenance of overall cellular proteostasis. Still, more research work on the quality control molecular functions of LRSAM1 is needed to comprehend its roles in various protein aggregatory diseases. Earlier findings suggest that in a mouse model of Charcot-Marie-Tooth (CMT) disease, lack of LRSAM1 functions sensitizes peripheral axons to degeneration. It has been observed that in CMT the patients retain dominant and recessive mutations of LRSAM1 gene, which encodes most likely a defective protein. However, still the comprehensive molecular pathomechanism of LRSAM1 in neuronal functions and neurodegenerative diseases is not known. The current article systematically represents the molecular functions, nature and detailed characterization of LRSAM1 E3 ubiquitin ligase. Here, we review emerging molecular mechanisms of LRSAM1 linked with neurobiological functions, with a clear focus on the mechanism of neurodegeneration and also on other diseases. Better understanding of LRSAM1 neurobiological and intracellular functions may contribute to develop promising novel therapeutic approaches, which can also propose new lines of molecular beneficial targets for various neurodegenerative diseases.


Assuntos
Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Nervos Periféricos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Axônios/metabolismo , Axônios/patologia , Regulação da Expressão Gênica , Humanos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Nervos Periféricos/patologia , Agregados Proteicos , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Proteostase/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Artigo em Inglês | MEDLINE | ID: mdl-31285226

RESUMO

Tuberculosis (TB) is a global health concern, and this situation has further worsened due to the emergence of drug-resistant strains and the failure of BCG vaccine to impart protection. There is an imperative need to develop highly sensitive, specific diagnostic tools, novel therapeutics, and vaccines for the eradication of TB. In the present study, a chemical screen of a pharmacologically active compound library was performed to identify antimycobacterial compounds. The phenotypic screen identified a few novel small-molecule inhibitors, including NU-6027, a known CDK-2 inhibitor. We demonstrate that NU-6027 inhibits Mycobacterium bovis BCG growth in vitro and also displayed cross-reactivity with Mycobacterium tuberculosis protein kinase D (PknD) and protein kinase G (PknG). Comparative structural and sequence analysis along with docking simulation suggest that the unique binding site stereochemistry of PknG and PknD accommodates NU-6027 more favorably than other M. tuberculosis Ser/Thr protein kinases. Further, we also show that NU-6027 treatment induces the expression of proapoptotic genes in macrophages. Finally, we demonstrate that NU-6027 inhibits M. tuberculosis growth in both macrophage and mouse tissues. Taken together, these results indicate that NU-6027 can be optimized further for the development of antimycobacterial agents.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Nitrosos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Antituberculosos/química , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium bovis/enzimologia , Mycobacterium bovis/genética , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Compostos Nitrosos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Pirimidinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
J Infect Dis ; 217(8): 1323-1333, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390153

RESUMO

Background: In the current study, we determined the effects of interleukin (IL)-21 on human natural killer (NK) cells and monocyte responses during Mycobacterium tuberculosis (Mtb) infection. Methods: We found that Mtb stimulated CD4+ and NK T cells from healthy individuals with latent tuberculosis infection (LTBI+) are major sources of IL-21. CD4+ cells from tuberculosis patients secreted less IL-21 than did CD4+ cells from healthy LTBI+ individuals. Interleukin-21 had no direct effect on Mtb-stimulated monocytes. Results: Interleukin-21-activated NK cells produced interferon (IFN)-γ, perforin, granzyme B, and granulysin; lysed Mtb-infected monocytes; and reduced Mtb growth. Interleukin-21-activated NK cells also enhanced IL-1ß, IL-18, and CCL4/macrophage-inflammatory protein (MIP)-1ß production and reduced IL-10 production by Mtb-stimulated monocytes. Recombinant IL-21 (1) inhibited Mtb growth, (2) enhanced IFN-γ, IL-1ß, IL-18, and MIP-1ß, and (3) reduced IL-10 expression in the lungs of Mtb-infected Rag2 knockout mice. Conclusions: These findings suggest that activated T cells enhance NK cell responses to lyse Mtb-infected human monocytes and restrict Mtb growth in monocytes through IL-21 production. Interleukin-21-activated NK cells also enhance the immune response by augmenting IL-1ß, IL-18, and MIP-1ß production and reducing IL-10 production by monocytes in response to an intracellular pathogen.


Assuntos
Interleucinas/metabolismo , Células Matadoras Naturais/fisiologia , Tuberculose Pulmonar/microbiologia , Animais , Linfócitos T CD4-Positivos/fisiologia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos , Mycobacterium tuberculosis , Tuberculose Pulmonar/imunologia
10.
IUBMB Life ; 70(9): 905-916, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761628

RESUMO

Tuberculosis (TB) is a leading cause of mortality and morbidity with an estimated 1.7 billion people latently infected with the pathogen worldwide. Clinically, TB infection presents itself as an asymptomatic infection, which gradually manifests to life threatening disease. The emergence of various drug resistant strains of Mycobacterium tuberculosis and lengthy duration of chemotherapy are major challenges in the field of TB drug development. Hence, there is an urgent need to develop scaffolds that possess a novel mechanism of action, can shorten the duration of therapy, and are active against both drug resistant and susceptible strains. In this review, we will discuss recent progress made in the field of TB drug development with emphasis on screening methods and drug targets from M. tuberculosis. The current review provides insights into mechanism of action of new scaffolds that are being evaluated in various stages of clinical trials. © 2018 IUBMB Life, 70(9):905-916, 2018.


Assuntos
Antituberculosos/farmacologia , Desenvolvimento de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Humanos , Tuberculose/microbiologia
11.
Cytokine ; 111: 1-12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30081297

RESUMO

Previously, we reported pivotal role of P2RX7 in augmenting autophagy in THP-1 cells upon Calcimycin treatment by modulating intracellular Calcium regulated ATP production but the role of immune modulators in Calcimycin induced autophagy is not known. In this study, we demonstrate that treatment with Calcimycin in PMA (Phorbol 12-myristate 13-acetate) differentiated THP-1 (dTHP-1) cells significantly induced interleukin (IL)-12 mRNA expression and its release. IL-12 receptor (IL-12Rß1 and IL-12Rß2) was also significantly expressed on the cell surface in dTHP-1 cells upon Calcimycin treatment. We report that small molecule or siRNA based P2RX7 inhibition abrogated IL-12 release upon Calcimycin treatment. P2RX7 inhibition also resulted in reduced Jun N-terminal kinase (JNK) activation, IκBα phosphorylation, p65 translocation and NF-κB expression. Further, inhibition of NF-κB activation or IL-12-IL-12R interaction led to down-regulation of the expression of autophagy related markers such as Beclin-1, autophagy-related gene (Atg) 3, Atg 7 and impairment of microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion. Finally, blocking of autophagy led to significant growth of intracellular mycobacteria in Calcimycin treated macrophages. Overall, these results reveal that interaction of Calcimycin with P2RX7 modulates intracellular JNK-NF-κB signaling pathway. This modulation results in IL-12 release that restricts the mycobacterial growth in THP-1 macrophages.


Assuntos
Autofagia/efeitos dos fármacos , Calcimicina/farmacologia , Interleucina-12/imunologia , Macrófagos , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Autofagia/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1
12.
Artigo em Inglês | MEDLINE | ID: mdl-28893784

RESUMO

New chemotherapeutic agents with novel mechanisms of action are urgently required to combat the challenge imposed by the emergence of drug-resistant mycobacteria. In this study, a phenotypic whole-cell screen identified 5-nitro-1,10-phenanthroline (5NP) as a lead compound. 5NP-resistant isolates harbored mutations that were mapped to fbiB and were also resistant to the bicyclic nitroimidazole PA-824. Mechanistic studies confirmed that 5NP is activated in an F420-dependent manner, resulting in the formation of 1,10-phenanthroline and 1,10-phenanthrolin-5-amine as major metabolites in bacteria. Interestingly, 5NP also killed naturally resistant intracellular bacteria by inducing autophagy in macrophages. Structure-activity relationship studies revealed the essentiality of the nitro group for in vitro activity, and an analog, 3-methyl-6-nitro-1,10-phenanthroline, that had improved in vitro activity and in vivo efficacy in mice compared with that of 5NP was designed. These findings demonstrate that, in addition to a direct mechanism of action against Mycobacterium tuberculosis, 5NP also modulates the host machinery to kill intracellular pathogens.


Assuntos
Antituberculosos/farmacologia , Autofagia/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Fenantrolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Nitroimidazóis/farmacologia , Relação Estrutura-Atividade , Células THP-1
13.
PLoS Pathog ; 11(2): e1004617, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25659138

RESUMO

In this study, we found that a subpopulation of CD4(+)CD25(+) (85% Foxp3(+)) cells from persons with latent tuberculosis infection (LTBI) inhibits growth of M. tuberculosis (M. tb) in human monocyte-derived macrophages (MDMs). A soluble factor, Rho GDP dissociation inhibitor (D4GDI), produced by apoptotic CD4(+)CD25(+) (85% Foxp3(+)) cells is responsible for this inhibition of M. tb growth in human macrophages and in mice. M. tb-expanded CD4(+C)D25(+)Foxp3(+)D4GDI(+) cells do not produce IL-10, TGF-ß and IFN-γ. D4GDI inhibited growth of M. tb in MDMs by enhancing production of IL-1ß, TNF-α and ROS, and by increasing apoptosis of M. tb-infected MDMs. D4GDI was concentrated at the site of disease in tuberculosis patients, with higher levels detected in pleural fluid than in serum. However, in response to M. tb, PBMC from tuberculosis patients produced less D4GDI than PBMC from persons with LTBI. M. tb-expanded CD4+CD25+ (85% Foxp3(+)) cells and D4GDI induced intracellular M. tb to express the dormancy survival regulator DosR and DosR-dependent genes, suggesting that D4GDI induces a non-replicating state in the pathogen. Our study provides the first evidence that a subpopulation of CD4(+)CD25(+) (85% Foxp3+) cells enhances immunity to M. tb, and that production of D4GDI by this subpopulation inhibits M. tb growth.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Tuberculose Latente/imunologia , Macrófagos/microbiologia , Subpopulações de Linfócitos T/imunologia , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/imunologia , Adolescente , Adulto , Idoso , Animais , Apoptose/imunologia , Separação Celular , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pessoa de Meia-Idade , Mycobacterium tuberculosis , Reação em Cadeia da Polimerase em Tempo Real , Tuberculose/imunologia , Adulto Jovem
14.
Biochim Biophys Acta Gen Subj ; 1861(12): 3190-3200, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935606

RESUMO

Phenotypic screening led to the identification of calcimycin as a potent inhibitor of Mycobacterium bovis BCG (M. bovis BCG) growth in vitro and in THP-1 cells. In the present study, we aim to decipher the mechanism of antimycobacterial activity of calcimycin. We noticed that treatment with calcimycin led to up-regulation of different autophagy markers like Beclin-1, autophagy-related gene (Atg) 7, Atg 3 and enhanced microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion in macrophages. This calcimycin-mediated killing of intracellular M. smegmatis and M. bovis BCG was abrogated in the presence of 3-methyladenine (3-MA). We also demonstrate that calcimycin binding with purinergic receptor P2X7 (P2RX7) led to increase in intracellular calcium level that regulates the extracellular release of ATP. ATP was able to regulate calcimycin-induced autophagy through P2RX7 in an autocrine fashion. Blocking of either P2RX7 expression by 1-[N,O-bis(5-Isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-62) or reducing intracellular calcium levels by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy-methyl) ester (BAPTA-AM) abrogated the antimycobacterial activity of calcimycin. Taken together, these results showed that calcimycin exerts its antimycobacterial effect by regulating intracellular calcium-dependent ATP release that induces autophagy in a P2RX7 dependent manner.


Assuntos
Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Calcimicina/farmacologia , Cálcio/metabolismo , Mycobacterium bovis/efeitos dos fármacos , Receptores Purinérgicos P2X7/fisiologia , Trifosfato de Adenosina/fisiologia , Células Cultivadas , Humanos , Mycobacterium bovis/metabolismo
15.
Eur J Immunol ; 44(7): 2013-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24643836

RESUMO

We studied the factors that regulate IL-23 receptor expression and IL-17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)-stimulated CD4(+) T cells from tuberculosis patients secreted less IL-17 than did CD4(+) T cells from healthy tuberculin reactors (PPD(+) ). M. tb-cultured monocytes from tuberculosis patients and PPD(+) donors expressed equal amounts of IL-23p19 mRNA and protein, suggesting that reduced IL-23 production is not responsible for decreased IL-17 production by tuberculosis patients. Freshly isolated and M. tb-stimulated CD4(+) T cells from tuberculosis patients had reduced IL-23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD(+) donors. STAT3 siRNA reduced IL-23 receptor expression and IL-17 production by CD4(+) T cells from PPD(+) donors. Tuberculosis patients had increased numbers of PD-1(+) T cells compared with healthy PPD(+) individuals. Anti-PD-1 antibody enhanced pSTAT3 and IL-23R expression and IL-17 production by M. tb-cultured CD4(+) T cells of tuberculosis patients. Anti-tuberculosis therapy decreased PD-1 expression, increased IL-17 and IFN-γ production and pSTAT3 and IL-23R expression. These findings demonstrate that increased PD-1 expression and decreased pSTAT3 expression reduce IL-23 receptor expression and IL-17 production by CD4(+) T cells of tuberculosis patients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-17/biossíntese , Receptor de Morte Celular Programada 1/fisiologia , Receptores de Interleucina/genética , Fator de Transcrição STAT3/fisiologia , Tuberculose/imunologia , Células Cultivadas , Humanos , Interleucina-23/biossíntese , Fosforilação , RNA Mensageiro/análise , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/análise
16.
J Infect Dis ; 209(4): 578-87, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041785

RESUMO

Previously, we found that interleukin 22 (IL-22) inhibits intracellular growth of Mycobacterium tuberculosis in human monocyte-derived macrophages (MDMs). In the current study, we determined the mechanisms underlying these effects. We found that W7, a phagolysosomal fusion inhibitor, abrogates IL-22-dependent M. tuberculosis growth inhibition in MDMs, suggesting that IL-22 acts through enhanced phagolysosomal fusion. Our microarray analysis indicated that recombinant IL-22 (rIL-22) enhances the expression of an intracellular signaling molecule, calgranulin A. This was confirmed by real-time polymerase chain reaction, Western blot, and confocal microscopy. Calgranulin A small interfering RNA (siRNA) abrogated rIL-22-dependent growth inhibition of M. tuberculosis in MDMs. IL-22 enhanced Rab7 expression and downregulated Rab14 expression of M. tuberculosis-infected MDMs, and these effects were reversed by calgranulin A siRNA. These results suggest that M. tuberculosis growth inhibition by IL-22 depends on calgranulin A and enhanced phagolysosomal fusion, which is associated with increased Rab7 and reduced Rab14 expression.


Assuntos
Calgranulina A/biossíntese , Interleucinas/farmacologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Calgranulina A/genética , Calgranulina A/imunologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Interleucinas/deficiência , Interleucinas/genética , Interleucinas/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/microbiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Estatísticas não Paramétricas , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Interleucina 22
17.
Am J Physiol Lung Cell Mol Physiol ; 307(8): L609-17, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172911

RESUMO

Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na(+) flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na(+)-K(+)-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA(-/-) mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na(+)-K(+)-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function.


Assuntos
Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Traqueia/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Animais , Apoptose , Permeabilidade da Membrana Celular , Células Cultivadas , Células Epiteliais/citologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Immunoblotting , Transporte de Íons , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Proteólise , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , RNA Interferente Pequeno/genética , Traqueia/citologia , Xenopus laevis/metabolismo
18.
J Immunol ; 189(2): 897-905, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22711885

RESUMO

We previously found that human NK cells lyse Mycobacterium tuberculosis-infected monocytes and alveolar macrophages and upregulate CD8(+) T cell responses. We also found that human NK cells produce IL-22, which inhibits intracellular growth of M. tuberculosis, and that NK cells lyse M. tuberculosis-expanded CD4(+)CD25(+)FOXP3(+) T regulatory cells (Tregs). To determine the role of NK cells during the protective immune response to vaccination in vivo, we studied the NK cell and T cell responses in a mouse model of vaccination with bacillus Calmette-Guérin (BCG), followed by challenge with virulent M. tuberculosis H37Rv. BCG vaccination enhanced the number of IFN-γ-producing and IL-22-producing NK cells. Depletion of NK1.1(+) cells at the time of BCG vaccination increased the number of immunosuppressive Tregs (CD4(+)CD25(hi), 95% Foxp3(+)) after challenge with M. tuberculosis H37Rv, and NK1.1(+) cells lysed expanded but not natural Tregs in BCG-vaccinated mice. Depletion of NK1.1(+) cells at the time of BCG vaccination also increased the bacillary burden and reduced T cell responses after challenge with M. tuberculosis H37Rv. IL-22 at the time of vaccination reversed these effects and enhanced Ag-specific CD4(+) cell responses in BCG-vaccinated mice after challenge with M. tuberculosis H37Rv. Our study provides evidence that NK1.1(+) cells and IL-22 contribute to the efficacy of vaccination against microbial challenge.


Assuntos
Interleucinas/fisiologia , Células Matadoras Naturais/imunologia , Mycobacterium bovis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Células Cultivadas , Feminino , Interferon gama/biossíntese , Interleucinas/biossíntese , Células Matadoras Naturais/microbiologia , Contagem de Linfócitos , Camundongos , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/microbiologia , Interleucina 22
19.
J Phys Chem B ; 128(25): 5995-6013, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38875472

RESUMO

Under the influence of various conditions, misfolding of soluble proteins occurs, leading to the formation of toxic insoluble amyloids. The formation and deposition of such amyloids within the body are associated with detrimental biological consequences such as the onset of several amyloid-related diseases. Previously, we established a strategy for the rational design of peptide inhibitors against amyloid formation based on the amyloidogenic-prone region of the protein. In the current study, we have designed and identified an Asp-containing rationally designed hexapeptide (SqP4) as an excellent inhibitor of hen egg-white lysozyme (HEWL) amyloid progression in vitro. First, SqP4 showed strong affinity toward the native monomeric HEWL leading to the stabilization of the native form and restriction in the unfolding process of monomeric HEWL. Second, SqP4 was found to arrest the amyloidogenic misfolded structure of HEWL in a nonfibrillar monomer-like stage. We also observed the differential effect of the protonation state of the charged amino acid (Asp) within the peptide inhibitor on the amyloid formation of HEWL and explored the reason behind the observations. The findings of this study can be implemented in future strategies for the development of potent therapeutics against other amyloid-related diseases.


Assuntos
Muramidase , Prótons , Muramidase/química , Muramidase/metabolismo , Animais , Amiloide/química , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Galinhas , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Dobramento de Proteína
20.
NPJ Vaccines ; 9(1): 57, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461350

RESUMO

In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA