Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep Med ; 2(10): 100409, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755129

RESUMO

Fibrosing chronic graft-versus-host disease (cGVHD) is a debilitating complication of allogeneic stem cell transplantation (alloSCT). A driver of fibrosis is the kynurenine (Kyn) pathway, and Kyn metabolism patterns and cytokines may influence cGVHD severity and manifestation (fibrosing versus gastrointestinal [GI] cGVHD). Using a liquid chromatography-tandem mass spectrometry approach on sera obtained from 425 patients with allografts, we identified high CXCL9, high indoleamine-2,3-dioxygenase (IDO) activity, and an activated Kyn pathway as common characteristics in all cGVHD subtypes. Specific Kyn metabolism patterns could be identified for non-severe cGVHD, severe GI cGVHD, and fibrosing cGVHD, respectively. Specifically, fibrosing cGVHD was associated with a distinct pathway shift toward anthranilic and kynurenic acid, correlating with reduced activity of the vitamin-B2-dependent kynurenine monooxygenase, low vitamin B6, and increased interleukin-18. The Kyn metabolite signature is a candidate biomarker for severe fibrosing cGVHD and provides a rationale for translational trials on prophylactic vitamin B2/B6 supplementation for cGVHD prevention.


Assuntos
Doença Enxerto-Hospedeiro/sangue , Ácido Cinurênico/sangue , Cinurenina/sangue , Riboflavina/sangue , Transplante de Células-Tronco , Vitamina B 6/sangue , Adolescente , Adulto , Idoso , Quimiocina CXCL9/sangue , Quimiocina CXCL9/genética , Feminino , Fibrose , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interleucina-18/sangue , Interleucina-18/genética , Quinurenina 3-Mono-Oxigenase/sangue , Quinurenina 3-Mono-Oxigenase/genética , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Leucemia/terapia , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Linfoma/terapia , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Transdução de Sinais , Transplante Homólogo , Triptofano/sangue , ortoaminobenzoatos/sangue
2.
PLoS One ; 16(5): e0251981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019583

RESUMO

Coenzyme A (CoA) is a fundamental cofactor involved in a number of important biochemical reactions in the cell. Altered CoA metabolism results in severe conditions such as pantothenate kinase-associated neurodegeneration (PKAN) in which a reduction of the activity of pantothenate kinase isoform 2 (PANK2) present in CoA biosynthesis in the brain consequently lowers the level of CoA in this organ. In order to develop a new drug aimed at restoring the sufficient amount of CoA in the brain of PKAN patients, we looked at its turnover. We report here the results of two experiments that enabled us to measure the half-life of pantothenic acid, free CoA (CoASH) and acetylCoA in the brains and livers of male and female C57BL/6N mice, and total CoA in the brains of male mice. We administered (intrastriatally or orally) a single dose of a [13C3-15N-18O]-labelled coenzyme A precursor (fosmetpantotenate or [13C3-15N]-pantothenic acid) to the mice and measured, by liquid chromatography-mass spectrometry, unlabelled- and labelled-coenzyme A species appearance and disappearance over time. We found that the turnover of all metabolites was faster in the liver than in the brain in both genders with no evident gender difference observed. In the oral study, the CoASH half-life was: 69 ± 5 h (male) and 82 ± 6 h (female) in the liver; 136 ± 14 h (male) and 144 ± 12 h (female) in the brain. AcetylCoA half-life was 74 ± 9 h (male) and 71 ± 7 h (female) in the liver; 117 ± 13 h (male) and 158 ± 23 (female) in the brain. These results were in accordance with the corresponding values obtained after intrastriatal infusion of labelled-fosmetpantotenate (CoASH 124 ± 13 h, acetylCoA 117 ± 11 and total CoA 144 ± 17 in male brain).


Assuntos
Acetilcoenzima A/farmacocinética , Encéfalo/metabolismo , Coenzima A/farmacocinética , Fígado/metabolismo , Ácido Pantotênico/farmacocinética , Acetilcoenzima A/metabolismo , Administração Oral , Animais , Biotransformação , Encéfalo/efeitos dos fármacos , Coenzima A/metabolismo , Feminino , Meia-Vida , Humanos , Injeções Intraventriculares , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/metabolismo
3.
Res Microbiol ; 170(4-5): 171-181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30953691

RESUMO

Living organisms have developed specific defence mechanisms to counteract hostile environmental conditions. Alkylation stress response mechanisms also occur in Mycobacterium tuberculosis (MTB) the pathogen responsible for tuberculosis. The effect of alkylating agents on the cellular growth of MTB was investigated using methyl methanesulfonate (MMS) as methyl donor demonstrating that limited doses of alkylating agents might affect MTB cell viability. A global investigation of Mycobacterium smegmatis response to alkylating stress was then pursued by differential proteomics to identify the most affected cellular pathways. Quantitative analysis of proteomic profiles demonstrated that most of the proteins upregulated in the presence of alkylating agents are involved in biofilm formation and/or cell wall biosynthesis. Tailored experiments confirmed that under stress conditions M. smegmatis elicits physical defence mechanisms by increasing biofilm formation. Among the upregulated proteins, we identified the GlmU bifunctional enzyme as a possible factor involved in biofilm production. Experiments with both conditional deletion and overexpressing glmU mutants demonstrated that down regulation of GlmU decreased M. smegmatis capabilities to produce biofilm whereas overexpression of the enzyme increased biofilm formation. These results were supported by inhibition of GlmU acetyltransferase activity with two different inhibitors, suggesting the involvement of this enzyme in the M. smegmatis defence mechanisms.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Metanossulfonato de Metila/farmacologia , Complexos Multienzimáticos/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Alquilação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ácido N-Acetilneuramínico/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
4.
Front Microbiol ; 7: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904018

RESUMO

DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS) by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA) involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analog acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC) strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.

5.
DNA Repair (Amst) ; 10(9): 934-41, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21788159

RESUMO

aidB is one of the four genes of E. coli that is induced by alkylating agents and regulated by Ada protein. Three genes (ada, alkA, and alkB) encode DNA repair proteins that remove or repair alkylated bases. However, the role of AidB remains unclear despite extensive efforts to determine its function in cells exposed to alkylating agents. The E. coli AidB protein was identified as a component of the protein complex that assembles at strong promoters. We demonstrate that AidB protein preferentially binds to UP elements, AT rich transcription enhancer sequences found upstream of many highly expressed genes, several DNA repair genes, and housekeeping genes. AidB allows efficient transcription from promoters containing an UP element upon exposure to a DNA methylating agent and protects downstream genes from DNA damage. The DNA binding domain is required to target AidB to specific genes preferentially protecting them from alkylation damage. However, deletion of AidB's DNA binding domain does not prevent its antimutagenic activity, instead this deletion appears to allow AidB to function as a cytoplasmic alkylation resistance protein. Our studies identify the role of AidB in alkylating agent exposed cells and suggest a new cellular strategy in which a subset of the genome is preferentially protected from damage by alkylating agents.


Assuntos
Dano ao DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Alquilantes/farmacologia , Alquilação/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA