Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
FASEB J ; 33(7): 8504-8518, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31017801

RESUMO

Dynamin 2 (DNM2) is a GTP-binding protein that controls endocytic vesicle scission and defines a whole class of dynamin-dependent endocytosis, including clathrin-mediated endocytosis by caveoli. It has been suggested that mutations in the DNM2 gene, associated with 3 inherited diseases, disrupt endocytosis. However, how exactly mutations affect the nanoscale morphology of endocytic machinery has never been studied. In this paper, we used live correlative scanning ion conductance microscopy (SICM) and fluorescence confocal microscopy (FCM) to study how disease-associated mutations affect the morphology and kinetics of clathrin-coated pits (CCPs) by directly following their dynamics of formation, maturation, and internalization in skin fibroblasts from patients with centronuclear myopathy (CNM) and in Cos-7 cells expressing corresponding dynamin mutants. Using SICM-FCM, which we have developed, we show how p.R465W mutation disrupts pit structure, preventing its maturation and internalization, and significantly increases the lifetime of CCPs. Differently, p.R522H slows down the formation of CCPs without affecting their internalization. We also found that CNM mutations in DNM2 affect the distribution of caveoli and reduce dorsal ruffling in human skin fibroblasts. Collectively, our SICM-FCM findings at single CCP level, backed up by electron microscopy data, argue for the impairment of several forms of endocytosis in DNM2-linked CNM.-Ali, T., Bednarska, J., Vassilopoulos, S., Tran, M., Diakonov, I. A., Ziyadeh-Isleem, A., Guicheney, P., Gorelik, J., Korchev, Y. E., Reilly, M. M., Bitoun, M., Shevchuk, A. Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin.


Assuntos
Dinamina II/genética , Endocitose/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Adulto , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Clatrina/genética , Feminino , Fibroblastos/patologia , Humanos , Cinética , Masculino , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos
2.
Circulation ; 132(25): 2372-84, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26450916

RESUMO

BACKGROUND: Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs). METHODS AND RESULTS: Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈ 40% greater current. Optical mapping of Ca(2+) transients revealed that rat AMs presented ≈ 3-fold as many spontaneous Ca(2+) release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca(2+) transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-ß-cyclodextrin, with an associated ≈ 30% whole-cell ICa,L reduction. Heart failure (16 weeks post-myocardial infarction) in rats resulted in a T-tubule degradation (by ≈ 40%) and significant elevation of spontaneous Ca(2+) release events. Although heart failure did not affect LTCC occurrence, it led to ≈ 25% decrease in T-tubule LTCC amplitude. CONCLUSIONS: We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Átrios do Coração , Microdomínios da Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Canais de Cálcio Tipo L/análise , Sinalização do Cálcio/fisiologia , Átrios do Coração/química , Humanos , Microdomínios da Membrana/química , Miócitos Cardíacos/química , Ratos , Especificidade da Espécie
3.
J Mol Cell Cardiol ; 67: 38-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24345421

RESUMO

The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of ß2-adrenergic receptor (ß2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate ß2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of ß2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased ß2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, ß2AR response could only be generated in T-tubules. However, the normally compartmentalized ß2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial ß2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of ß2AR and compartmentation of ß2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors.


Assuntos
Caveolina 3/metabolismo , Simulação por Computador , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Animais , Western Blotting , Caveolina 3/genética , Síndromes Compartimentais/fisiopatologia , Expressão Gênica , Insuficiência Cardíaca/fisiopatologia , Ratos
4.
Circulation ; 126(6): 697-706, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22732314

RESUMO

BACKGROUND: Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic ß(2)-adrenergic receptor (ß(2)AR) from canonical stimulatory G-protein-activated cardiostimulant to inhibitory G-protein-activated cardiodepressant pathways. METHODS AND RESULTS: We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via G(i) inactivation by pertussis toxin pretreatment. ß(2)AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a ß(2)AR-Gi-dependent manner. Preventing epinephrine-G(i) effects increased mortality in the Takotsubo model, whereas ß-blockers that activate ß(2)AR-G(i) exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. CONCLUSIONS: We suggest that biased agonism of epinephrine for ß(2)AR-G(s) at low concentrations and for G(i) at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in ß(2)ARs explaining the differential regional responses. We suggest this epinephrine-specific ß(2)AR-G(i) signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.


Assuntos
Modelos Animais de Doenças , Epinefrina/sangue , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Cardiomiopatia de Takotsubo/sangue , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/sangue , Células Cultivadas , Epinefrina/administração & dosagem , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/sangue , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067192

RESUMO

(1) Pulmonary hypertension (PH)-associated right ventricular (RV) failure is linked to a reduction in pulmonary vasodilators. Treprostinil has shown effectiveness in PAH patients with cardiac decompensation, hinting at potential cardiac benefits. We investigated treprostinil's synergy with isoprenaline in RV and LV cardiomyocytes. We hypothesised that disease-related RV structural changes in cardiomyocytes would reduce contractile responses and cAMP/PKA signalling activity. (2) We induced PH in male Sprague Dawley rats using monocrotaline and isolated their ventricular cardiomyocytes. The effect of in vitro treprostinil and isoprenaline stimulation on contraction was assessed. FRET microscopy was used to study PKA activity associated with treprostinil stimulation in AKAR3-NES FRET-based biosensor-expressing cells. (3) RV cells exhibited maladaptive remodelling with hypertrophy, impaired contractility, and calcium transients compared to control and LV cardiomyocytes. Combining treprostinil and isoprenaline failed to enhance inotropy in PH RV cardiomyocytes. PH RV cardiomyocytes displayed an aberrant contractile behaviour, which the combination treatment could not rectify. Finally, we observed decreased PKA activity in treprostinil-treated PH RV cardiomyocytes. (4) PH-associated RV cardiomyocyte remodelling reduced treprostinil sensitivity, inotropic support, and impaired relaxation. Overall, this study highlights the complexity of RV dysfunction in advanced PH and suggests the need for alternative therapeutic strategies.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Ratos , Animais , Masculino , Miócitos Cardíacos , Isoproterenol/farmacologia , Ratos Sprague-Dawley
6.
Methods Mol Biol ; 2483: 33-59, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286668

RESUMO

The newly generated software plugin MultiFRET allows for real-time measurements of multiplexed fluorescent biosensors in a near high-throughput fashion. Here we describe a detailed protocol for setup and use of this software for any purpose requiring instant feedback during fluorescence measurement experiments. We further describe its non-primary features including beam splitter misalignment correction, custom calculations through input of simple equations typed in a .txt format, customizable Excel output, and offline bulk analysis of image stacks. Finally, we supply a usage example of a cAMP measurement in cultured rat neonatal cardiomyocytes.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Miócitos Cardíacos , Ratos , Software
7.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291124

RESUMO

The therapeutic benefit of stimulating the cGMP pathway as a form of treatment to combat heart failure, as well as other fibrotic pathologies, has become well established. However, the development and signal compartmentation of this crucial pathway has so far been overlooked. We studied how the three main cGMP pathways, namely, nitric oxide (NO)-cGMP, natriuretic peptide (NP)-cGMP, and ß3-adrenoreceptor (AR)-cGMP, mature over time in culture during cardiomyocyte differentiation from human pluripotent stem cells (hPSC-CMs). After introducing a cGMP sensor for Förster Resonance Energy Transfer (FRET) microscopy, we used selective phosphodiesterase (PDE) inhibition to reveal cGMP signal compartmentation in hPSC-CMs at various times of culture. Methyl-ß-cyclodextrin was employed to remove cholesterol and thus to destroy caveolae in these cells, where physical cGMP signaling compartmentalization is known to occur in adult cardiomyocytes. We identified PDE3 as regulator of both the NO-cGMP and NP-cGMP pathway in the early stages of culture. At the late stage, the role of the NO-cGMP pathway diminished, and it was predominantly regulated by PDE1, PDE2, and PDE5. The NP-cGMP pathway shows unrestricted locally and unregulated cGMP signaling. Lastly, we observed that maturation of the ß3-AR-cGMP pathway in prolonged cultures of hPSC-CMs depends on the accumulation of caveolae. Overall, this study highlighted the importance of structural development for the necessary compartmentation of the cGMP pathway in maturing hPSC-CMs.


Assuntos
GMP Cíclico , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , GMP Cíclico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Técnicas de Cultura de Células , Transdução de Sinais
8.
Cells ; 9(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053822

RESUMO

The ability to differentiate induced-pluripotent stem cells into cardiomyocytes (iPSC-CMs) has opened up novel avenues for potential cardiac therapies. However, iPSC-CMs exhibit a range of somewhat immature functional properties. This study explored the development of the beta-adrenergic receptor (ßAR) pathway, which is crucial in regulating contraction and signifying the health and maturity of myocytes. We explored the compartmentation of ß2AR-signalling and phosphodiesterases (PDEs) in caveolae, as functional nanodomains supporting the mature phenotype. Förster Resonance Energy Transfer (FRET) microscopy was used to study the cyclic adenosine monophosphate (cAMP) levels in iPSC-CMs at day 30, 60, and 90 following ßAR subtype-specific stimulation. Subsequently, the PDE2, PDE3, and PDE4 activity was investigated using specific inhibitors. Cells were treated with methyl-ß-cyclodextrin (MßCD) to remove cholesterol as a method of decompartmentalising ß2AR. As iPSC-CMs mature with a prolonged culture time, the caveolae density is increased, leading to a reduction in the overall cytoplasmic cAMP signal stimulated through ß2AR (but not ß1AR). Pan-phosphodiesterase inhibition or caveolae depletion leads to an increase in the ß2AR-stimulated cytoplasmic cAMP. Moreover, with time in culture, the increase in the ßAR-dependent cytoplasmic cAMP becomes more sensitive to cholesterol removal. The regulation of the ß2AR response by PDE2 and 4 is similarly increased with the time in culture. We conclude that both the ß2AR and PDEs are restricted to the caveolae nanodomains, and thereby exhibit a tighter spatial restriction over the cAMP signal in late-stage compared to early iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Cavéolas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Insuficiência Cardíaca/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
9.
Cells ; 8(12)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795419

RESUMO

Förster resonance energy transfer (FRET) is increasingly used for non-invasive measurement of fluorescently tagged molecules in live cells. In this study, we have developed a freely available software tool MultiFRET, which, together with the use of a motorised microscope stage, allows multiple single cells to be studied in one experiment. MultiFRET is a Java plugin for Micro-Manager software, which provides real-time calculations of ratio-metric signals during acquisition and can simultaneously record from multiple cells in the same experiment. It can also make other custom-determined live calculations that can be easily exported to Excel at the end of the experiment. It is flexible and can work with multiple spectral acquisition channels. We validated this software by comparing the output of MultiFRET to that of a previously established and well-documented method for live ratio-metric FRET experiments and found no significant difference between the data produced with the use of the new MultiFRET and other methods. In this validation, we used several cAMP FRET sensors and cell models: i) isolated adult cardiomyocytes from transgenic mice expressing the cytosolic epac1-camps and targeted pmEpac1 and Epac1-PLN sensors, ii) isolated neonatal mouse cardiomyocytes transfected with the AKAP79-CUTie sensor, and iii) human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) transfected with the Epac-SH74 sensor. The MultiFRET plugin is an open source freely available package that can be used in a wide area of live cell imaging when live ratio-metric calculations are required.


Assuntos
AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Miócitos Cardíacos/metabolismo , Software , Algoritmos , Animais , Biomarcadores , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Reprodutibilidade dos Testes
10.
J Clin Invest ; 115(4): 940-50, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15841180

RESUMO

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in beta cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and beta cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced beta cell mass. Overt diabetes did not ensue, because beta cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced beta cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in beta cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.


Assuntos
Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Ilhotas Pancreáticas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Animais , Peso Corporal , Eletrofisiologia , Genótipo , Glucose/metabolismo , Hipotálamo/citologia , Insulina/administração & dosagem , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/citologia , Leptina/administração & dosagem , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Fosfoproteínas/genética , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Sci Rep ; 8(1): 7110, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740092

RESUMO

Bile acids are recognised as bioactive signalling molecules. While they are known to influence arrhythmia susceptibility in cholestasis, there is limited knowledge about the underlying mechanisms. To delineate mechanisms underlying fetal heart rhythm disturbances in cholestatic pregnancy, we used FRET microscopy to monitor cAMP release and contraction measurements in isolated rodent neonatal cardiomyocytes. The unconjugated bile acids CDCA, DCA and UDCA and, to a lesser extent, CA were found to be relatively potent agonists for the GPBAR1 (TGR5) receptor and elicit cAMP release, whereas all glyco- and tauro- conjugated bile acids are weak agonists. The bile acid-induced cAMP production does not lead to an increase in contraction rate, and seems to be mediated by the RI isoform of adenylate cyclase, unlike adrenaline-dependent release which is mediated by the RII isoform. In contrast, bile acids elicited slowing of neonatal cardiomyocyte contraction indicating that other signalling pathways are involved. The conjugated bile acids were found to be partial agonists of the muscarinic M2, but not sphingosin-1-phosphate-2, receptors, and act partially through the Gi pathway. Furthermore, the contraction slowing effect of unconjugated bile acids may also relate to cytotoxicity at higher concentrations.


Assuntos
Ácidos e Sais Biliares/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética , Receptores Muscarínicos/genética , Animais , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Modelos Animais de Doenças , Feminino , Frequência Cardíaca Fetal/fisiologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Gravidez , Transdução de Sinais/genética
12.
Cell Rep ; 23(2): 459-469, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642004

RESUMO

Cardiomyocytes from the apex but not the base of the heart increase their contractility in response to ß2-adrenoceptor (ß2AR) stimulation, which may underlie the development of Takotsubo cardiomyopathy. However, both cell types produce comparable cytosolic amounts of the second messenger cAMP. We investigated this discrepancy using nanoscale imaging techniques and found that, structurally, basal cardiomyocytes have more organized membranes (higher T-tubular and caveolar densities). Local membrane microdomain responses measured in isolated basal cardiomyocytes or in whole hearts revealed significantly smaller and more short-lived ß2AR/cAMP signals. Inhibition of PDE4, caveolar disruption by removing cholesterol or genetic deletion of Cav3 eliminated differences in local cAMP production and equilibrated the contractile response to ß2AR. We conclude that basal cells possess tighter control of cAMP because of a higher degree of signaling microdomain organization. This provides varying levels of nanostructural control for cAMP-mediated functional effects that orchestrate macroscopic, regional physiological differences within the heart.


Assuntos
Membrana Celular/química , AMP Cíclico/metabolismo , Coração/anatomia & histologia , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Caveolina 3/deficiência , Caveolina 3/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Feminino , Coração/fisiologia , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
13.
Biochim Biophys Acta ; 1686(3): 190-9, 2005 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-15629688

RESUMO

Plasma apolipoprotein E (apoE) is a 34-kDa polymorphic protein which has atheroprotective actions by clearing remnant lipoproteins and sequestering excess cellular cholesterol. Low or dysfunctional apoE is a risk factor for hyperlipidaemia and atherosclerosis, and for restenosis after angioplasty. Here, in short-term studies designed to establish proof-of-principle, we investigate whether encapsulated recombinant Chinese hamster ovary (CHO) cells can secrete wild-type apoE3 protein in vitro and then determine whether peritoneal implantation of the microcapsules into apoE-deficient (apoE(-/-)) mice reduces their hypercholesterolaemia. Recombinant CHO-E3 cells were encapsulated into either alginate poly-l-lysine or alginate polyethyleneimine/polybrene microspheres. After verifying stability and apoE3 secretion, the beads were then implanted into the peritoneal cavity of apoE(-/-) mice; levels of plasma apoE3, cholesterol and lipoproteins were monitored for up to 14 days post-implantation. Encapsulated CHO-E3 cells continued to secrete apoE3 protein throughout a 60-day study period in vitro, though levels declined after 14 days. This cell-derived apoE3 was biologically active. When conditioned medium from encapsulated CHO-E3 cells was incubated with cultured cells pre-labelled with [(3)H]-cholesterol, efflux of cholesterol was two to four times greater than with normal medium (at 8 h, for example, 7.4+/-0.3% vs. 2.4+/-0.2% of cellular cholesterol; P<0.001). Moreover, when secreted apoE3 was injected intraperitoneally into apoE(-/-) mice, apoE3 was detected in plasma and the hyperlipidaemia improved. Similarly, when alginate polyethyleneimine/polybrene capsules were implanted into the peritoneum of apoE(-/-) mice, apoE3 was secreted into plasma and at 7 days total cholesterol was reduced, while atheroprotective high-density lipoprotein (HDL) increased. In a second study, apoE was detectable in plasma of five mice treated with alginate poly-l-lysine beads, 4 and 7 days post-implantation, though not at day 14. Furthermore, their hypercholesterolaemia was reduced, while HDL was clearly elevated in all mice at days 4 and 7 (from 18.4+/-6.2% of total lipoproteins to 31.1+/-6.8% at 7 days; P<0.001); however, these had rebounded by day 14, possibly due to the emergence of anti-apoE antibodies. We conclude that microencapsulated apoE-secreting cells have the potential to ameliorate the hyperlipidaemia of apoE deficiency, but that the technology must be improved to become a feasible therapeutic to treat atherosclerosis.


Assuntos
Apolipoproteínas E/genética , Células CHO , Transplante de Células/métodos , Hiperlipidemias/terapia , Alginatos/química , Animais , Apolipoproteínas E/metabolismo , HDL-Colesterol/sangue , Cricetinae , Cricetulus , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Injeções Intraperitoneais , Camundongos , Camundongos Knockout , Microesferas , Peritônio
14.
Cell Rep ; 14(1): 140-151, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26725114

RESUMO

Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.


Assuntos
Sinalização do Cálcio , Insuficiência Cardíaca/metabolismo , Mecanotransdução Celular , Microtúbulos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Insuficiência Cardíaca/patologia , Humanos , Microtúbulos/patologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia
15.
FEBS Lett ; 548(1-3): 74-8, 2003 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-12885410

RESUMO

Cardiac toxicity is an uncommon but potentially serious complication of cancer therapy, especially with anthracyclines. One of the most effective anticancer drugs is doxorubicin, but its value is limited by the risk of developing cardiomyopathy and ventricular arrhythmia. When applied to a network of periodically contracting cardiomyocytes in culture, doxorubicin induces rhythm disturbances. Using a novel rapid assay based on non-invasive ion-conductance microscopy we show that the beta-antagonist esmolol can restore rhythm in doxorubicin-treated cultures of cardiomyocytes. Moreover, esmolol pre-treatment can protect the culture from doxorubicin-induced arrhythmia.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Propanolaminas/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/induzido quimicamente , Técnicas de Cultura de Células/métodos , Antagonismo de Drogas , Modelos Cardiovasculares , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Ratos
16.
J Cell Biol ; 197(4): 499-508, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22564416

RESUMO

Current knowledge of the structural changes taking place during clathrin-mediated endocytosis is largely based on electron microscopy images of fixed preparations and x-ray crystallography data of purified proteins. In this paper, we describe a study of clathrin-coated pit dynamics in living cells using ion conductance microscopy to directly image the changes in pit shape, combined with simultaneous confocal microscopy to follow molecule-specific fluorescence. We find that 70% of pits closed with the formation of a protrusion that grew on one side of the pit, covered the entire pit, and then disappeared together with pit-associated clathrin-enhanced green fluorescent protein (EGFP) and actin-binding protein-EGFP (Abp1-EGFP) fluorescence. This was in contrast to conventionally closing pits that closed and cleaved from flat membrane sheets and lacked accompanying Abp1-EGFP fluorescence. Scission of both types of pits was found to be dynamin-2 dependent. This technique now enables direct spatial and temporal correlation between functional molecule-specific fluorescence and structural information to follow key biological processes at cell surfaces.


Assuntos
Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Animais , Células COS , Chlorocebus aethiops , Clatrina/química , Dinamina II/metabolismo , Endocitose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia
17.
Biol Reprod ; 76(6): 1045-53, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17329594

RESUMO

Insulin receptor signaling regulates female reproductive function acting in the central nervous system and ovary. Female mice that globally lack insulin receptor substrate (IRS) 2, which is a key mediator of insulin receptor action, are infertile with defects in hypothalamic and ovarian functions. To unravel the tissue-specific roles of IRS2, we examined reproductive function in female mice that lack Irs2 only in the neurons. Surprisingly, these animals had minimal defects in pituitary and ovarian hormone levels, ovarian anatomy and function, and breeding performance, which indicates that the central nervous system IRS2 is not an obligatory signaling component for the regulation of reproductive function. Therefore, we undertook a detailed analysis of ovarian function in a novel Irs2 global null mouse line. Comparative morphometric analysis showed reduced follicle size, increased numbers of atretic follicles, as well as impaired oocyte growth and antral cavity development in Irs2 null ovaries. Granulosa cell proliferation was also defective in the Irs2 null ovaries. Furthermore, the insulin- and eCG-stimulated phosphoinositide-3-OH kinase signaling events, which included phosphorylation of Akt/protein kinase B and glycogen synthase kinase 3-beta, were impaired, whereas mitogen-activated protein kinase signaling was preserved in Irs2 null ovaries. These abnormalities were associated with reduced expression of cyclin D2 and increased CDKN1B levels, which indicates dysregulation of key components of the cell cycle apparatus implicated in ovarian function. Our data suggest that ovarian rather than central nervous system IRS2 signaling is important in the regulation of female reproductive function.


Assuntos
Sistema Nervoso Central/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Ovário/metabolismo , Fosfoproteínas/fisiologia , Reprodução/fisiologia , Animais , Proliferação de Células , Ciclina D2 , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/citologia , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Ovário/embriologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 100(10): 5819-22, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12721367

RESUMO

Although the dynamics of cell membranes and associated structures is vital for cell function, little is known due to lack of suitable methods. We found, using scanning ion conductance microscopy, that microvilli, membrane projections supported by internal actin bundles, undergo a life cycle: fast height-dependent growth, relatively short steady state, and slow height-independent retraction. The microvilli can aggregate into relatively stable structures where the steady state is extended. We suggest that the intrinsic dynamics of microvilli, combined with their ability to make stable structures, allows them to act as elementary "building blocks" for the assembly of specialized structures on the cell surface.


Assuntos
Membrana Celular/ultraestrutura , Urotélio/ultraestrutura , Animais , Animais Recém-Nascidos , Ciclo Celular , Fracionamento Celular/métodos , Linhagem Celular , Células Cultivadas , Rim/citologia , Rim/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura , Microvilosidades/ultraestrutura , Técnicas de Cultura de Órgãos , Órgão Espiral/citologia , Órgão Espiral/ultraestrutura , Urotélio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA