Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 658: 571-583, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134666

RESUMO

Herein, using an electrophoretic deposition strategy, a S-scheme CdS (cubic)/BiVO4 (monoclinic) heterostructured photocatalyst is fabricated. The as-synthesized photocatalysts exhibit high carrier separation efficiency, prominent hydrogen evolution ability and high stability. The results of the detailed density functional theory (DFT) prove that the photogenerated electrons and holes are located in BiVO4 and CdS components, respectively. Besides, an explicit solvent model based on the electron-enriched region in CdS/BiVO4 heterojunction is designed deliberately to investigate the solid/liquid interface issues. Intriguing findings demonstrate that the surface hydrogen diffusing rate in CdS/BiVO4/H2O is faster than that of BiVO4/H2O and is highly associated with the electron-enrich effect, which has a greater capacity to promote water decomposition, the possibility of proton collision and photocatalytic hydrogen evolution. Notably, the H p orbital can participate in the electron-enrich effect during solvation, thus reforming the orbital energy level and activating the HER of the BiVO4 component in the CdS/BiVO4 system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA