Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; : e2311714, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501853

RESUMO

Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.

2.
Phys Chem Chem Phys ; 26(15): 12121-12132, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587495

RESUMO

Solvothermal synthesis presents a facile and highly flexible approach to chemical processing and it is widely used for preparation of micro- and nanosized inorganic materials. The large number of synthesis parameters in combination with the richness of inorganic chemistry means that it is difficult to predict or design synthesis outcomes, and it is demanding to uncover the effect of different parameters due to the sealed and complex nature of solvothermal reactors along with the time demands related to reactor cleaning, sample purification, and characterization. This study explores the effect on formation of crystalline products of six common anions in solvothermal treatment of aqueous and ethanolic precursors. Three different cations are included in the study (Mn2+, Co2+, Cu2+) representing chemical affinities towards different regions of the periodic table with respect to the hard soft acid base (HSAB) classification and the Goldschmidt classification. They additionally belong to the commonly used 3d transition metals and display a suitable variety in solvothermal chemistry to highlight anion effects. The results of the solvothermal in situ experiments demonstrate a clear effect of the precursor anions, with respect to whether crystallization occurs or not and the characteristics of the formed phases. Additionally, some of the anions are shown to be redox active and to influence the formation temperature of certain phases which in turn relates to the observed average crystallite sizes.

3.
J Synchrotron Radiat ; 30(Pt 3): 571-581, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042662

RESUMO

In heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure-activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet. Here, a fully automated and integrated catalytic profile reactor setup is shown for the combined measurement of temperature, gas composition and high-energy X-ray diffraction (XRD) profiles, using the oxidative dehydrogenation of C2H6 to C2H4 over MoO3/γ-Al2O3 as a test system. The profile reactor methodology was previously developed for X-ray absorption spectroscopy and is here extended for operando XRD. The profile reactor is a versatile and accessible research tool for combined spatially resolved structure-activity profiling, enabling the use of multiple synchrotron-based characterization methods to promote a knowledge-based optimization of a wide range of catalytic systems in a time- and resource-efficient way.

4.
Angew Chem Int Ed Engl ; 62(43): e202307948, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37635657

RESUMO

CuBi2 O4 has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering. We find that a fast decrease in the generated photocurrents correlates directly with the formation of a metallic Bi phase. We further show that the slower formation of metallic Cu, as well as the dissolution of the electrode in contact with the electrolyte, further affect the CuBi2 O4 activity and morphology. Our study provides a comprehensive picture of the degradation mechanisms affecting CuBi2 O4 electrodes under operation and poses the methodological basis to investigate the photocorrosion processes affecting a wide range of PEC materials.

5.
J Am Chem Soc ; 143(40): 16332-16336, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582201

RESUMO

Colloidal bismuth therapeutics have been used for hundreds of years, yet remain mysterious. Here we report an X-ray pair distribution function (PDF) study of the solvolysis of bismuth disalicylate, a model for the metallodrug bismuth subsalicylate (Pepto-Bismol). This reveals catalysis by traces of water, followed by multistep cluster growth. The ratio of the two major species, {Bi9O7} and {Bi38O44}, depends on exposure to air, time, and the solvent. The solution-phase cluster structures are of significantly higher symmetry in comparison to solid-state analogues, with reduced off-center Bi3+ displacements. This explains why such "magic-size" clusters can be both stable enough to crystallize and sufficiently labile for further growth.


Assuntos
Bismuto , Compostos Organometálicos , Salicilatos
6.
Phys Chem Chem Phys ; 21(7): 3734-3741, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30462119

RESUMO

The interfacial premelting in ice/clay nano composites was studied by high energy X-ray diffraction. Below the melting point of bulk water, the formation of liquid water was observed for the ice/vermiculite and ice/kaolin systems. The liquid fraction is gradually increasing with temperature. For both minerals, similar effective premelting layer thicknesses of 2-3 nm are reached 3 K below the bulk melting point. For the quantitative description of the molten water fraction in wet clay minerals we developed a continuum model for short range interactions and arbitrary pore size distributions. This model quantitatively describes the experimental data over the entire temperature range. Model parameters were obtained by fitting using a maximum entropy (MaxEnt) approach. Pronounced differences in the deviation from Antonow's rule relating interfacial free energy between ice, water, and clay are observed for the charged vermiculite and uncharged kaolin minerals. The resultant parameters are discussed in terms of their ice nucleation efficiency. Using well defined and characterized ice/clay nano composite samples, this work bridges the gap between studies on single crystalline ice/solid model interfaces and naturally occurring soils and permafrost.

7.
J Synchrotron Radiat ; 22(3): 675-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931084

RESUMO

Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Šwavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1's efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation.

8.
J Synchrotron Radiat ; 21(Pt 1): 119-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24365925

RESUMO

Under the experimental condition that all Bragg peaks in a powder X-ray diffraction (PXRD) pattern have the same shape, one can readily obtain the Bragg intensities without fitting any parameters. This condition is fulfilled at the P02.1 beamline at PETRA III using the seventh harmonic from a 23 mm-period undulator (60 keV) at a distance of 65 m. For grain sizes of the order of 1 µm, the Bragg peak shape in the PXRD is entirely determined by the diameter of the capillary containing the powder sample and the pixel size of the image plate detector, and consequently it is independent of the scattering angle. As an example, a diamond powder has been chosen and structure factors derived which are in accordance with those calculated from density functional theory methods of the WIEN2k package to within an accuracy that allows a detailed electron density analysis.

9.
Phys Chem Chem Phys ; 16(34): 18217-25, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25055181

RESUMO

Electrochemical metallisation (ECM) memory cells potentially suffer from limited memory retention time, which slows down the future commercialisation of this type of data memory. In this work, we investigate Ag/GeSx/Pt redox-based resistive memory cells (ReRAM) with and without an additional Ta barrier layer by time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray absorption spectroscopy (XAS) and synchrotron high-energy X-ray diffractometry (XRD) to investigate the physical mechanism behind the shift and/or loss of OFF data retention. Electrical measurements demonstrate the effectiveness and high potential of the diffusion barrier layer in practical applications.

10.
Angew Chem Int Ed Engl ; 53(14): 3667-70, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24574244

RESUMO

Pair distribution function analysis of in situ total scattering data recorded during formation of WO3 nanocrystals under hydrothermal conditions reveal that a complex precursor structure exists in solution. The WO6 polyhedra of the precursor cluster undergo reorientation before forming the nanocrystal. This reorientation is the critical element in the formation of different hexagonal polymporphs of WO3.

11.
Nat Mach Intell ; 6(2): 180-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404481

RESUMO

The removal or cancellation of noise has wide-spread applications in imaging and acoustics. In applications in everyday life, such as image restoration, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Denoising scientific data is further challenged by unknown noise profiles. In fact, such data will often include noise from multiple distinct sources, which substantially reduces the applicability of simulation-based approaches. Here we show how scientific data can be denoised by using a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction and resonant X-ray scattering data recorded on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We additionally show that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

12.
Nanoscale ; 15(11): 5284-5292, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36810774

RESUMO

Gallium oxides are of broad interest due to their wide band gaps and attractive photoelectric properties. Typically, the synthesis of gallium oxide nanoparticles is based on a combination of solvent-based methods and subsequent calcination, but detailed information about solvent based formation processes is lacking, and this limits the tailoring of materials. Here we have examined the formation mechanisms and crystal structure transformations of gallium oxides during solvothermal synthesis using in situ X-ray diffraction. γ-Ga2O3 readily forms over a wide range of conditions. In contrast, ß-Ga2O3 only forms at high temperatures (T > 300 °C), and it is always preceded by γ-Ga2O3, indicating that γ-Ga2O3 is a crucial part of the formation mechanism of ß-Ga2O3. The activation energy for formation of ß-Ga2O3 from γ-Ga2O3 is determined to be 90-100 kJ mol-1 in ethanol, water and aqueous NaOH based on kinetic modelling of phase fractions obtained from multi-temperature in situ X-ray diffraction data. At low temperatures GaOOH and Ga5O7OH form in aqueous solvent, but these phases are also obtained from γ-Ga2O3. Systematic exploration of synthesis parameters such as temperature, heating rate, solvent and reaction time reveal that they all affect the resulting product. In general, the solvent based reaction paths are different from reports on solid state calcination studies. This underlines that the solvent is an active part of the solvothermal reactions and to a high degree determines different formation mechanisms.

13.
J Appl Crystallogr ; 56(Pt 3): 581-588, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284256

RESUMO

Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.

14.
Nanoscale ; 15(45): 18481-18488, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942507

RESUMO

Pd possesses attractive catalytic properties and nano-structuring is an obvious way to enhance catalytic activity. Alloying Pd with Pb has been shown to enhance the catalytic effect of alcohol oxidation. Further optimization of the catalytic effect can be accomplished by controlling the particle size and key to this is understanding the formation mechanism. By monitoring solvothermal syntheses using in situ X-ray total scattering, this study unveils the formation mechanism of PbxPdy intermetallic nanoparticles. The formation occurs through a multi-step mechanism. Initially, Pd nanoparticles are formed, followed by incorporation of Pb into the Pd-structure, thus forming PbxPdy intermetallic nanoparticles. By varying the reaction time and temperature, the incorporation of Pb can be controlled, thereby tailoring the phase outcome. Based on the in situ solvothermal syntheses, ex situ autoclave syntheses were performed, resulting in the synthesis of Pb3Pd5 and Pb9Pd13 with a purity above 93%. The catalytic effect of these intermetallic phases towards the hydrogen evolution reaction (HER) is assessed. It is found that Pd, Pb3Pd5, and Pb9Pd13 have comparable stabilities, however, the overpotential increases with increasing amounts of Pb.

15.
Light Sci Appl ; 12(1): 130, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248250

RESUMO

The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography. We present images of dried, unstained, and unfixed biological objects obtained by scanning Compton X-ray microscopy, at a resolution of about 70 nm. This microscope was realised using novel wedged multilayer Laue lenses that were fabricated to sub-ångström precision, a new wavefront measurement scheme for hard X rays, and efficient pixel-array detectors. The doses required to form these images were as little as 0.02% of the tolerable dose and 0.05% of that needed for phase-contrast imaging at similar resolution using 17 keV photon energy. The images obtained provide a quantitative map of the projected mass density in the sample, as confirmed by imaging a silicon wedge. Based on these results, we find that it should be possible to obtain radiation damage-free images of biological samples at a resolution below 10 nm.

16.
Chem Sci ; 13(43): 12883-12891, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36519061

RESUMO

The structures of metal ions in solution constitute essential information for obtaining chemical insight spanning from catalytic reaction mechanisms to formation of functional nanomaterials. Here, we explore Zr4+ solution structures using X-ray pair distribution function (PDF) analysis across pH (0-14), concentrations (0.1-1.5 M), solvents (water, methanol, ethanol, acetonitrile) and metal sources (ZrCl4, ZrOCl2·8H2O, ZrO(NO3)2·xH2O). In water, [Zr4(OH)8(OH2)16]8+-tetramers are predominant, while non-aqueous solvents contain monomeric complexes. The PDF analysis also reveals second sphere coordination of chloride counter ions to the aqueous tetramers. The results are reproducible across data measured at three different beamlines at the PETRA-III and MAX IV synchrotron light sources.

17.
IUCrJ ; 9(Pt 5): 594-603, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071809

RESUMO

An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018 ▸). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general.

18.
Acta Crystallogr A Found Adv ; 78(Pt 6): 515, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318075

RESUMO

The name of the third author of the article by Koch et al. [Acta Cryst. (2021). A77, 611-636] is corrected.

19.
Rev Sci Instrum ; 93(6): 065111, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777992

RESUMO

Characterizing electrode surface structures under operando conditions is essential for fully understanding structure-activity relationships in electrocatalysis. Here, we combine in a single experiment high-energy surface x-ray diffraction as a characterizing technique with a rotating disk electrode to provide steady state kinetics under electrocatalytic conditions. Using Pt(111) and Pt(100) model electrodes, we show that full crystal truncation rod measurements are readily possible up to rotation rates of 1200 rpm. Furthermore, we discuss possibilities for both potentiostatic as well as potentiodynamic measurements, demonstrating the versatility of this technique. These different modes of operation, combined with the relatively simple experimental setup, make the combined rotating disk electrode-surface x-ray diffraction experiment a powerful technique for studying surface structures under operando electrocatalytic conditions.

20.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 275-286, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843736

RESUMO

xLi2O-(100 - x)TeO2 (x = 20 and 25 mol%) and xV2O5-(25 - x)Li2O-75TeO2 (x = 1, 2, 3, 4 and 5 mol%) glasses were prepared by melt-quenching and their thermal and structural properties were characterized by differential scanning calorimetry, Raman spectroscopy, high-energy X-ray diffraction and neutron diffraction and reverse Monte Carlo (RMC) simulations. The glass transition temperature increases steadily with an increase in V2O5 mol% in lithium tellurite glasses due to an increase in the average single bond energy of the glass network. The X-ray and neutron diffraction structure factors were modelled by RMC technique and the Te-O distributions show the first peak in the range 1.85-1.90 Å, with V-O = 1.75-1.95 Å, Li-O = 1.85-2.15 Šand O-O = 2.70-2.80 Å. The average Te-O coordination number decreases with an increase in Li2O mol% in lithium tellurite glasses, and the V-O coordination decreases from 5.12 to 3.81 with an increase in V2O5 concentration in vanadium lithium tellurite glasses. The O-Te-O, O-V-O, O-Li-O and O-O-O linkages have maxima in the ranges 86°-89°, 82°-87°, 80°-85° and at 59o, respectively. The structural analysis of tellurite glasses reveal significant short-range and medium-range disorder due to the existence of a wide range of Te-O and Te-Te distances in the first coordination shell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA