Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(4): 1128-1138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351171

RESUMO

Bipolar disorder is a severe neuro-psychiatric condition where genome-wide association and sequencing studies have pointed to dysregulated gene expression as likely to be causal. We observed strong correlation in expression between GWAS-associated genes and hypothesised that healthy function depends on balance in the relative expression levels of the associated genes and that patients display stoichiometric imbalance. We developed a method for quantifying stoichiometric imbalance and used this to predict each sample's diagnosis probability in four cortical brain RNAseq datasets. The percentage of phenotypic variance on the liability-scale explained by these probabilities ranged from 10.0 to 17.4% (AUC: 69.4-76.4%) which is a multiple of the classification performance achieved using absolute expression levels or GWAS-based polygenic risk scores. Most patients display stoichiometric imbalance in three to ten genes, suggesting that dysregulation of only a small fraction of associated genes can trigger the disorder, with the identity of these genes varying between individuals.


Assuntos
Transtorno Bipolar , Encéfalo , Estudo de Associação Genômica Ampla , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Expressão Gênica/genética , Masculino , Feminino , Autopsia/métodos , Herança Multifatorial/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Pessoa de Meia-Idade
2.
PLoS Genet ; 18(5): e1010161, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560157

RESUMO

Epidemiological and clinical studies have found associations between depression and cardiovascular disease risk factors, and coronary artery disease patients with depression have worse prognosis. The genetic relationship between depression and these cardiovascular phenotypes is not known. We here investigated overlap at the genome-wide level and in individual loci between depression, coronary artery disease and cardiovascular risk factors. We used the bivariate causal mixture model (MiXeR) to quantify genome-wide polygenic overlap and the conditional/conjunctional false discovery rate (pleioFDR) method to identify shared loci, based on genome-wide association study summary statistics on depression (n = 450,619), coronary artery disease (n = 502,713) and nine cardiovascular risk factors (n = 204,402-776,078). Genetic loci were functionally annotated using FUnctional Mapping and Annotation (FUMA). Of 13.9K variants influencing depression, 9.5K (SD 1.0K) were shared with body-mass index. Of 4.4K variants influencing systolic blood pressure, 2K were shared with depression. ConjFDR identified 79 unique loci associated with depression and coronary artery disease or cardiovascular risk factors. Six genomic loci were associated jointly with depression and coronary artery disease, 69 with blood pressure, 49 with lipids, 9 with type 2 diabetes and 8 with c-reactive protein at conjFDR < 0.05. Loci associated with increased risk for depression were also associated with increased risk of coronary artery disease and higher total cholesterol, low-density lipoprotein and c-reactive protein levels, while there was a mixed pattern of effect direction for the other risk factors. Functional analyses of the shared loci implicated metabolism of alpha-linolenic acid pathway for type 2 diabetes. Our results showed polygenic overlap between depression, coronary artery disease and several cardiovascular risk factors and suggest molecular mechanisms underlying the association between depression and increased cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Depressão/genética , Diabetes Mellitus Tipo 2/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Brain Behav Immun ; 118: 287-299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461955

RESUMO

Recent findings link cognitive impairment and inflammatory-immune dysregulation in schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, heterogeneity and translation between the periphery and central (blood-to-brain) mechanisms remains a challenge. Starting with a large SZ, BD and healthy control cohort (n = 1235), we aimed to i) identify candidate peripheral markers (n = 25) associated with cognitive domains (n = 9) and elucidate heterogenous immune-cognitive patterns, ii) evaluate the regulation of candidate markers using human induced pluripotent stem cell (iPSC)-derived astrocytes and neural progenitor cells (n = 10), and iii) evaluate candidate marker messenger RNA expression in leukocytes using microarray in available data from a subsample of the main cohort (n = 776), and in available RNA-sequencing deconvolution analysis of postmortem brain samples (n = 474) from the CommonMind Consortium (CMC). We identified transdiagnostic subgroups based on covariance between cognitive domains (measures of speed and verbal learning) and peripheral markers reflecting inflammatory response (CRP, sTNFR1, YKL-40), innate immune activation (MIF) and extracellular matrix remodelling (YKL-40, CatS). Of the candidate markers there was considerable variance in secretion of YKL-40 in iPSC-derived astrocytes and neural progenitor cells in SZ compared to HC. Further, we provide evidence of dysregulated RNA expression of genes encoding YKL-40 and related signalling pathways in a high neuroinflammatory subgroup in the postmortem brain samples. Our findings suggest a relationship between peripheral inflammatory-immune activity and cognitive impairment, and highlight YKL-40 as a potential marker of cognitive functioning in a subgroup of individuals with severe mental illness.


Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas , Humanos , Proteína 1 Semelhante à Quitinase-3 , Transtorno Bipolar/complicações , Testes Neuropsicológicos , Encéfalo , Cognição , RNA
4.
Mol Psychiatry ; 28(7): 3033-3043, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36653674

RESUMO

Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.


Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas , Humanos , Lítio/farmacologia , Lítio/uso terapêutico , Lítio/metabolismo , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Compostos de Lítio/uso terapêutico , Neurônios/metabolismo
5.
Mol Psychiatry ; 28(11): 4924-4932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759039

RESUMO

Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Imagem de Tensor de Difusão/métodos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética
6.
Mol Psychiatry ; 28(3): 1284-1292, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577840

RESUMO

A potential relationship between dysregulation of immune/inflammatory pathways and cognitive impairment has been suggested in severe mental illnesses (SMI), such as schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, multivariate relationships between peripheral inflammatory/immune-related markers and cognitive domains are unclear, and many studies do not account for inter-individual variance in both cognitive functioning and inflammatory/immune status. This study aimed to investigate covariance patterns between inflammatory/immune-related markers and cognitive domains and further elucidate heterogeneity in a large SMI and healthy control (HC) cohort (SZ = 343, BD = 289, HC = 770). We applied canonical correlation analysis (CCA) to identify modes of maximum covariation between a comprehensive selection of cognitive domains and inflammatory/immune markers. We found that poor verbal learning and psychomotor processing speed was associated with higher levels of interleukin-18 system cytokines and beta defensin 2, reflecting enhanced activation of innate immunity, a pattern augmented in SMI compared to HC. Applying hierarchical clustering on covariance patterns identified by the CCA revealed a high cognition-low immune dysregulation subgroup with predominantly HC (24% SZ, 45% BD, 74% HC) and a low cognition-high immune dysregulation subgroup predominantly consisting of SMI patients (76% SZ, 55% BD, 26% HC). These subgroups differed in IQ, years of education, age, CRP, BMI (all groups), level of functioning, symptoms and defined daily dose (DDD) of antipsychotics (SMI cohort). Our findings suggest a link between cognitive impairment and innate immune dysregulation in a subset of individuals with severe mental illness.


Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico , Testes Neuropsicológicos , Cognição , Esquizofrenia/complicações , Inflamação/complicações , Biomarcadores
7.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757824

RESUMO

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsias Parciais , Epilepsia Generalizada , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Epilepsias Parciais/genética , Genômica , Epilepsia Generalizada/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Neurobiol Dis ; 183: 106174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286172

RESUMO

BACKGROUND: Neuroinflammation is involved in the pathophysiology of Alzheimer's disease (AD), including immune-linked genetic variants and molecular pathways, microglia and astrocytes. Multiple Sclerosis (MS) is a chronic, immune-mediated disease with genetic and environmental risk factors and neuropathological features. There are clinical and pathobiological similarities between AD and MS. Here, we investigated shared genetic susceptibility between AD and MS to identify putative pathological mechanisms shared between neurodegeneration and the immune system. METHODS: We analysed GWAS data for late-onset AD (N cases = 64,549, N controls = 634,442) and MS (N cases = 14,802, N controls = 26,703). Gaussian causal mixture modelling (MiXeR) was applied to characterise the genetic architecture and overlap between AD and MS. Local genetic correlation was investigated with Local Analysis of [co]Variant Association (LAVA). The conjunctional false discovery rate (conjFDR) framework was used to identify the specific shared genetic loci, for which functional annotation was conducted with FUMA and Open Targets. RESULTS: MiXeR analysis showed comparable polygenicities for AD and MS (approximately 1800 trait-influencing variants) and genetic overlap with 20% of shared trait-influencing variants despite negligible genetic correlation (rg = 0.03), suggesting mixed directions of genetic effects across shared variants. conjFDR analysis identified 16 shared genetic loci, with 8 having concordant direction of effects in AD and MS. Annotated genes in shared loci were enriched in molecular signalling pathways involved in inflammation and the structural organisation of neurons. CONCLUSIONS: Despite low global genetic correlation, the current results provide evidence for polygenic overlap between AD and MS. The shared loci between AD and MS were enriched in pathways involved in inflammation and neurodegeneration, highlighting new opportunities for future investigation.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Sistema Imunitário , Loci Gênicos , Inflamação/genética , Polimorfismo de Nucleotídeo Único
9.
Psychol Med ; 53(4): 1479-1488, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35387700

RESUMO

BACKGROUND: Both neurodegenerative and neurodevelopmental abnormalities have been suggested to be part of the etiopathology of severe mental illness (SMI). Neuron-specific enolase (NSE), mainly located in the neuronal cytoplasm, may indicate the process as it is upregulated after neuronal injury while a switch from non-neuronal enolase to NSE occurs during neuronal maturation. METHODS: We included 1132 adult patients with SMI [schizophrenia (SZ) or bipolar spectrum disorders], 903 adult healthy controls (HC), 32 adolescent patients with SMI and 67 adolescent HC. Plasma NSE concentrations were measured by enzyme immunoassay. For 842 adults and 85 adolescents, we used total grey matter volume (TGMV) based on T1-weighted magnetic resonance images processed in FreeSurfer v6.0. We explored NSE case-control differences in adults and adolescents separately. To investigate whether putative case-control differences in NSE were TGMV-dependent we controlled for TGMV. RESULTS: We found significantly lower NSE concentrations in both adult (p < 0.001) and adolescent patients with SMI (p = 0.007) compared to HC. The results remained significant after controlling for TGMV. Among adults, both patients with SZ spectrum (p < 0.001) and bipolar spectrum disorders (p = 0.005) had lower NSE than HC. In both patient subgroups, lower NSE levels were associated with increased symptom severity. Among adults (p < 0.001) and adolescents (p = 0.040), females had lower NSE concentrations than males. CONCLUSION: We found lower NSE concentrations in adult and adolescent patients with SMI compared to HC. The results suggest the lack of progressive neuronal injury, and may reflect abnormal neuronal maturation. This provides further support of a neurodevelopmental rather than a neurodegenerative mechanism in SMI.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Esquizofrenia , Masculino , Feminino , Humanos , Adulto , Adolescente , Neurônios , Fosfopiruvato Hidratase
10.
Mol Psychiatry ; 27(12): 5167-5176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100668

RESUMO

Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Encéfalo/patologia , Fenótipo , Tálamo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos
11.
Brain ; 145(1): 142-153, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34273149

RESUMO

Migraine is three times more prevalent in people with bipolar disorder or depression. The relationship between schizophrenia and migraine is less certain although glutamatergic and serotonergic neurotransmission are implicated in both. A shared genetic basis to migraine and mental disorders has been suggested but previous studies have reported weak or non-significant genetic correlations and five shared risk loci. Using the largest samples to date and novel statistical tools, we aimed to determine the extent to which migraine's polygenic architecture overlaps with bipolar disorder, depression and schizophrenia beyond genetic correlation, and to identify shared genetic loci. Summary statistics from genome-wide association studies were acquired from large-scale consortia for migraine (n cases = 59 674; n controls = 316 078), bipolar disorder (n cases = 20 352; n controls = 31 358), depression (n cases = 170 756; n controls = 328 443) and schizophrenia (n cases = 40 675, n controls = 64 643). We applied the bivariate causal mixture model to estimate the number of disorder-influencing variants shared between migraine and each mental disorder, and the conditional/conjunctional false discovery rate method to identify shared loci. Loci were functionally characterized to provide biological insights. Univariate MiXeR analysis revealed that migraine was substantially less polygenic (2.8 K disorder-influencing variants) compared to mental disorders (8100-12 300 disorder-influencing variants). Bivariate analysis estimated that 800 (SD = 300), 2100 (SD = 100) and 2300 (SD = 300) variants were shared between bipolar disorder, depression and schizophrenia, respectively. There was also extensive overlap with intelligence (1800, SD = 300) and educational attainment (2100, SD = 300) but not height (1000, SD = 100). We next identified 14 loci jointly associated with migraine and depression and 36 loci jointly associated with migraine and schizophrenia, with evidence of consistent genetic effects in independent samples. No loci were associated with migraine and bipolar disorder. Functional annotation mapped 37 and 298 genes to migraine and each of depression and schizophrenia, respectively, including several novel putative migraine genes such as L3MBTL2, CACNB2 and SLC9B1. Gene-set analysis identified several putative gene sets enriched with mapped genes including transmembrane transport in migraine and schizophrenia. Most migraine-influencing variants were predicted to influence depression and schizophrenia, although a minority of mental disorder-influencing variants were shared with migraine due to the difference in polygenicity. Similar overlap with other brain-related phenotypes suggests this represents a pool of 'pleiotropic' variants that influence vulnerability to diverse brain-related disorders and traits. We also identified specific loci shared between migraine and each of depression and schizophrenia, implicating shared molecular mechanisms and highlighting candidate migraine genes for experimental validation.


Assuntos
Transtornos Mentais , Transtornos de Enxaqueca , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/genética , Transtornos de Enxaqueca/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
12.
BMC Psychiatry ; 23(1): 659, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37674162

RESUMO

BACKGROUND: Impulsivity is a transdiagnostic feature linked to severe clinical expression and a potential target for psychopharmacological strategies. Biological underpinnings are largely unknown, but involvement of immune dysregulation has been indicated, and the effects of psychopharmacological agents vary. We investigated if impulsivity was associated with circulating immune marker levels and with a range of psychopharmacological treatment regimens in severe mental disorders. METHODS: Impulsivity was assessed in a sample (N = 657) of patients with schizophrenia or schizophreniform disorder (SCZ) (N = 116) or bipolar disorder (BD) (N = 159) and healthy participants (N = 382) using the Barratt Impulsiveness Scale (BIS-11) questionnaire. Plasma levels of systemic immune markers (RANTES, IL-1RA, IL-18, IL-18BP, sTNFR-1) were measured by enzyme immunoassays. Patients underwent thorough clinical assessment, including evaluation of psychotropic medication. Associations were assessed using linear regressions. RESULTS: Impulsivity  was positively associated with SCZ (p < 0.001) and BD (p < 0.001) diagnosis and negatively associated with age (p < 0.05), but not significantly associated with any of the circulating immune markers independently of diagnostic status. Among patients, impulsivity was negatively associated with lithium treatment (p = 0.003) and positively associated with antidepressant treatment (p = 0.011) after controlling for diagnosis, psychotropic co-medications, manic symptoms, and depressive symptoms. CONCLUSIONS: We report elevated impulsivity across SCZ and BD but no associations to systemic immune dysregulation based on the current immune marker selection. The present study reveals associations between impulsivity in severe mental disorders and treatment with lithium and antidepressants, with opposite directions. Future studies are warranted to determine the causal directionality of the observed associations with psychopharmacotherapy.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Transtornos Psicóticos , Humanos , Estudos Transversais , Transtornos Mentais/tratamento farmacológico , Comportamento Impulsivo , Transtorno Bipolar/tratamento farmacológico , Lítio
13.
Addict Biol ; 28(6): e13282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252880

RESUMO

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity and mortality. The causes underlying this relationship are poorly understood. Although these conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse summary statistics from independent genome wide association studies of OUD, schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we characterized the identified shared loci using biological annotation resources. OUD data were obtained from the Million Veteran Program, Yale-Penn and Study of Addiction: Genetics and Environment (SAGE) (15 756 cases, 99 039 controls). SCZ (53 386 cases, 77 258 controls), BD (41 917 cases, 371 549 controls) and MD (170 756 cases, 329 443 controls) data were provided by the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification of 14 novel OUD loci at condFDR < 0.05 and 7 unique loci shared between OUD and SCZ (n = 2), BD (n = 2) and MD (n = 7) at conjFDR < 0.05 with concordant effect directions, in line with estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD) and at the major histocompatibility complex region (SCZ and MD). Our findings provide new insights into the shared genetic architecture between OUD and SCZ, BD and MD, indicating a complex genetic relationship, suggesting overlapping neurobiological pathways.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Depressão , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Loci Gênicos
14.
Am J Hum Genet ; 105(2): 334-350, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374203

RESUMO

Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive ("discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10-8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms-early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways-that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness.


Assuntos
Transtornos Cognitivos/fisiopatologia , Cognição/fisiologia , Escolaridade , Transtornos do Neurodesenvolvimento/etiologia , Polimorfismo de Nucleotídeo Único , Esquizofrenia/fisiopatologia , Transmissão Sináptica , Adulto , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Transtornos do Neurodesenvolvimento/patologia
16.
Hum Brain Mapp ; 43(2): 700-720, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626047

RESUMO

The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.


Assuntos
Senilidade Prematura , Envelhecimento , Encéfalo , Fatores de Risco Cardiometabólico , Adulto , Fatores Etários , Envelhecimento/sangue , Envelhecimento/patologia , Envelhecimento/fisiologia , Senilidade Prematura/sangue , Senilidade Prematura/diagnóstico por imagem , Senilidade Prematura/patologia , Senilidade Prematura/fisiopatologia , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiologia , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade
17.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615640

RESUMO

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Imageamento por Ressonância Magnética , Transtornos Mentais , Transtornos do Neurodesenvolvimento , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
18.
Acta Neuropathol ; 144(5): 821-842, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066633

RESUMO

Amyloid-beta 42 (Aß42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aß42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aß42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Proteínas de Ciclo Celular , Humanos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
19.
Brain Behav Immun ; 99: 299-306, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758379

RESUMO

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental illnesses (SMI) that are part of a psychosis continuum, and dysregulated innate immune responses have been suggested to be involved in their pathophysiology. However, disease-specific immune mechanisms in SMI are not known yet. Recently, dyslipidemia has been linked to systemic inflammasome activation, and elevated atherogenic lipid ratios have been shown to correlate with circulating levels of inflammatory biomarkers in SMI. It is, however, not yet known if increased systemic cholesterol load leads to inflammasome activation in these patients. METHODS: We tested the hypothesis that patients with SCZ and BD display higher circulating levels compared to healthy individuals of key members of the IL-18 system using a large patient cohort (n = 1632; including 737 SCZ and 895 BD), and healthy controls (CTRL; n = 1070). In addition, we assessed associations with coronary artery disease risk factors in SMI, focusing on relevant inflammasome-related, neuroendocrine, and lipid markers. RESULTS: We report higher baseline levels of circulating IL-18 system components (IL-18, IL-18BPA, IL-18R1), and increased expression of inflammasome-related genes (NLRP3 and NLRC4) in the blood of patients relative to CTRL. We demonstrate a cholesterol dyslipidemia pattern in psychotic disorders, and report correlations between levels of blood cholesterol types and the expression of inflammasome system elements in SMI. CONCLUSIONS: Based on these results, we suggest a role for inflammasome activation/dysregulation in SMI. Our findings further the understanding of possible underlying inflammatory mechanisms and may expose important therapeutic targets in SMI.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
20.
Mol Psychiatry ; 26(11): 6789-6805, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34075196

RESUMO

Lithium (Li), valproate (VPA) and lamotrigine (LTG) are commonly used to treat bipolar disorder (BD). While their clinical efficacy is well established, the mechanisms of action at the molecular level are still incompletely understood. Here we investigated the molecular effects of Li, LTG and VPA treatment in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) generated from 3 healthy controls (CTRL), 3 affective disorder Li responsive patients (Li-R) and 3 Li non-treated patients (Li-N) after 6 h and 1 week of exposure. Differential expression (DE) analysis after 6 h of treatment revealed a transcriptional signature that was associated with all three drugs and most significantly enriched for ribosome and oxidative phosphorylation (OXPHOS) pathways. In addition to the shared DE genes, we found that Li exposure was associated with 554 genes uniquely regulated in Li-R NPCs and enriched for spliceosome, OXPHOS and thermogenesis pathways. In-depth analysis of the treatment-associated transcripts uncovered a significant decrease in intron retention rate, suggesting that the beneficial influence of these drugs might partly be related to splicing. We examined the mitochondrial respiratory function of the NPCs by exploring the drugs' effects on oxygen consumption rate (OCR) and glycolytic rate (ECAR). Li improved OCR levels only in Li-R NPCs by enhancing maximal respiration and reserve capacity, while VPA enhanced maximal respiration and reserve capacity in Li-N NPCs. Overall, our findings further support the involvement of mitochondrial functions in the molecular mechanisms of mood stabilizers and suggest novel mechanisms related to the spliceosome, which warrant further investigation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Humanos , Lítio/farmacologia , Respiração , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA