Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biol ; 27(11): 4179-97, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17325034

RESUMO

Herein, we report the first evidence that c-SRC is required for retinoic acid (RA) receptor (RAR) signaling, an observation that suggests a new paradigm for this family of nuclear hormone receptors. We observed that CSK negatively regulates RAR functions required for neuritogenic differentiation. CSK overexpression inhibited RA-mediated neurite outgrowth, a result which correlated with the inhibition of the SFK c-SRC. Consistent with an extranuclear effect of CSK on RAR signaling and neurite outgrowth, CSK overexpression blocked the downstream activation of RAC1. The conversion of GDP-RAC1 to GTP-RAC1 parallels the activation of c-SRC as early as 15 min following all-trans-retinoic acid treatment in LA-N-5 cells. The cytoplasmic colocalization of c-SRC and RARgamma was confirmed by immunofluorescence staining and confocal microscopy. A direct and ligand-dependent binding of RAR with SRC was observed by surface plasmon resonance, and coimmunoprecipitation studies confirmed the in vivo binding of RARgamma to c-SRC. Deletion of a proline-rich domain within RARgamma abrogated this interaction in vivo. CSK blocked the RAR-RA-dependent activation of SRC and neurite outgrowth in LA-N-5 cells. The results suggest that transcriptional signaling events mediated by RA-RAR are necessary but not sufficient to mediate complex differentiation in neuronal cells. We have elucidated a nongenomic extranuclear signal mediated by the RAR-SRC interaction that is negatively regulated by CSK and is required for RA-induced neuronal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Genes src , Neuritos/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/metabolismo , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Pirazóis/metabolismo , Pirimidinas/metabolismo , Receptores do Ácido Retinoico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor alfa de Ácido Retinoico , Tretinoína/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Cancers (Basel) ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859084

RESUMO

Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA