Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comp Neurol ; 398(1): 25-48, 1998 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-9703026

RESUMO

By using three-dimensional computer reconstruction techniques and the production of two-dimensional unfolded maps, we analyzed the topographic organization of projections from the entorhinal cortex of the rat to the dentate gyrus. The retrograde tracers, Fast blue and Diamidino yellow, were injected at all septotemporal levels of the dentate gyrus, and the distribution of retrogradely labeled layer II cells in the entorhinal cortex was plotted by using computer-aided microscopy systems. Discrete injections of fluorescent dyes into the dentate gyrus labeled bands of layer II neurons in the entorhinal cortex that covered approximately 45% of its surface area. Injections confined to the septal half of the dentate gyrus resulted in a band that occupied the most lateral and caudomedial portions of the entorhinal cortex. Although there were subtle changes in the density of labeled cells in this region, essentially the same region of cells was labeled after any injection into the septal half of the dentate gyrus. Injections into mid-septotemporal levels of the dentate gyrus (50-75% of the distance from the septal pole) led to a distinctly different pattern of retrograde labeling. A more medial portion of the lateral entorhinal cortex and a more rostral portion of the medial entorhinal area were labeled in these cases. Another change in entorhinal labeling occurred when the injection involved the most temporal quarter of the dentate gyrus. Injections into this area led to a constrained region of entorhinal labeling that included the most medial portion of the lateral entorhinal area and the most rostral portion of the medial entorhinal area. Although the domains of cells projecting to septal, mid-septotemporal, and temporal levels of the dentate gyrus were not entirely segregated, there was relatively little overlap of the three populations of neurons. These data raise the possibility that different portions of the entorhinal-hippocampal circuit are capable of semiautonomous information processing, at least at the stage of input to the dentate gyrus.


Assuntos
Mapeamento Encefálico , Giro Denteado/citologia , Via Perfurante/citologia , Ratos Sprague-Dawley/anatomia & histologia , Amidinas , Animais , Giro Denteado/química , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Masculino , Parvalbuminas/análise , Via Perfurante/química , Ratos , Núcleos Septais/química , Núcleos Septais/citologia , Lobo Temporal/química , Lobo Temporal/citologia , Terminologia como Assunto
2.
J Comp Neurol ; 398(1): 49-82, 1998 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-9703027

RESUMO

Two sets of experiments were carried out to examine the organization of associational connections within the rat entorhinal cortex. First, a comprehensive analysis of the areal and laminar distribution of intrinsic projections was performed by using the anterograde tracers Phaseolus vulgaris-leuocoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Second, retrograde tracers were injected into the dentate gyrus and PHA-L and BDA were injected into the entorhinal cortex to determine the extent to which entorhinal neurons that project to different septotemporal levels of the dentate gyrus are linked by intrinsic connections. The regional distribution of intrinsic projections within the entorhinal cortex was related to the location of the cells of origin along the mediolateral axis of the entorhinal cortex. Cells located in the lateral regions of the entorhinal cortex gave rise to intrinsic connections that largely remained within the lateral reaches of the entorhinal cortex, i.e., within the rostrocaudally situated entorhinal band of cells that projected to septal levels of the dentate gyrus. Cells located in the medial regions of the entorhinal cortex gave rise to intrinsic projections confined to the medial portion of the entorhinal cortex. Injections made into mid-mediolateral regions of the entorhinal cortex mainly gave rise to projections to mid-mediolateral levels, although some fibers did enter either lateral or medial portions of the entorhinal cortex. These patterns were the same regardless of whether the projections originated from the superficial (II-III) or deep (V-VI) layers of the entorhinal cortex. This organizational scheme indicates, and our combined retrograde/anterograde labeling studies confirmed, that laterally situated entorhinal neurons that project to septal levels of the dentate gyrus are not in direct communication with neurons projecting to the temporal portions of the dentate gyrus. These results suggest that entorhinal intrinsic connections allow for both integration (within a band) and segregation (across bands) of entorhinal cortical information processing.


Assuntos
Giro Denteado/citologia , Córtex Entorrinal/citologia , Ratos Sprague-Dawley/anatomia & histologia , Amidinas , Animais , Biotina/análogos & derivados , Dextranos , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais , Fito-Hemaglutininas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA