Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L266-L279, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150543

RESUMO

Small airway disease (SAD) is a key early-stage pathology of chronic obstructive pulmonary disease (COPD). COPD is associated with cellular senescence whereby cells undergo growth arrest and express the senescence-associated secretory phenotype (SASP) leading to chronic inflammation and tissue remodeling. Parenchymal-derived fibroblasts have been shown to display senescent properties in COPD, however small airway fibroblasts (SAFs) have not been investigated. Therefore, this study investigated the role of these cells in COPD and their potential contribution to SAD. To investigate the senescent and fibrotic phenotype of SAF in COPD, SAFs were isolated from nonsmoker, smoker, and COPD lung resection tissue (n = 9-17 donors). Senescence and fibrotic marker expressions were determined using iCELLigence (proliferation), qPCR, Seahorse assay, and ELISAs. COPD SAFs were further enriched for senescent cells using FACSAria Fusion based on cell size and autofluorescence (10% largest/autofluorescent vs. 10% smallest/nonautofluorescent). The phenotype of the senescence-enriched population was investigated using RNA sequencing and pathway analysis. Markers of senescence were observed in COPD SAFs, including senescence-associated ß-galactosidase, SASP release, and reduced proliferation. Because the pathways driving this phenotype were unclear, we used cell sorting to enrich senescent COPD SAFs. This population displayed increased p21CIP1 and p16INK4a expression and mitochondrial dysfunction. RNA sequencing suggested these senescent cells express genes involved in oxidative stress response, fibrosis, and mitochondrial dysfunction pathways. These data suggest COPD SAFs are senescent and may be associated with fibrotic properties and mitochondrial dysfunction. Further understanding of cellular senescence in SAFs may lead to potential therapies to limit SAD progression.NEW & NOTEWORTHY Fibroblasts and senescence are thought to play key roles in the pathogenesis of small airway disease and COPD; however, the characteristics of small airway-derived fibroblasts are not well explored. In this study we isolate and enrich the senescent small airway-derived fibroblast (SAF) population from COPD lungs and explore the pathways driving this phenotype using bulk RNA-seq.


Assuntos
Asma , Doenças Mitocondriais , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/metabolismo , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Asma/patologia , Doenças Mitocondriais/metabolismo
2.
Clin Sci (Lond) ; 136(10): 733-746, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35608088

RESUMO

Autophagy (or macroautophagy) is a key cellular process that removes damaged molecules (particularly proteins) and subcellular organelles to maintain cellular homeostasis. There is growing evidence that abnormalities in autophagy may contribute to the pathogenesis of many chronic diseases, including asthma and chronic obstructive pulmonary disease (COPD). In asthma, increased autophagy plays a role in promoting type 2 immune responses and eosinophilic inflammation, whereas decreased autophagy may be important in neutrophilic asthma. Acute exposure to cigarette smoke may activate autophagy, resulting in ciliary dysfunction and death of airway epithelial cells, whereas in stable COPD most studies have demonstrated an impairment in autophagy, with reduced autophagic flux and accumulation of abnormal mitochondria (defective mitophagy) and linked to cellular senescence. Autophagy may be increased or decreased in different cell types and depending on the cellular environment, making it difficult to target autophagy therapeutically. Several existing drugs may activate autophagy, including rapamycin, metformin, carbamazepine, cardiac glycosides and statins, whereas others, such as chloroquine, inhibit this process. However, these drugs are nonspecific and more selective drugs are now in development, which may prove useful as novel agents to treat asthma and COPD in the future.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/tratamento farmacológico , Autofagia , Senescência Celular , Humanos , Mitofagia , Doença Pulmonar Obstrutiva Crônica/metabolismo
3.
J Immunol ; 205(9): 2489-2498, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958690

RESUMO

Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with cigarette smoking. Alterations in local lung and systemic iron regulation are associated with disease progression and pathogenesis. Hepcidin, an iron regulatory peptide hormone, is altered in subjects with COPD; however, the molecular role of hepcidin in COPD pathogenesis remains to be determined. In this study, using a murine model of smoke-induced COPD, we demonstrate that lung and circulating hepcidin levels are inhibited by cigarette smoke. We show that cigarette smoke exposure increases erythropoietin and bone marrow-derived erythroferrone and leads to expanded but inefficient erythropoiesis in murine bone marrow and an increase in ferroportin on alveolar macrophages (AMs). AMs from smokers and subjects with COPD display increased expression of ferroportin as well as hepcidin. Notably, murine AMs exposed to smoke fail to increase hepcidin in response to Gram-negative or Gram-positive infection. Loss of hepcidin in vivo results in blunted functional responses of AMs and exaggerated responses to Streptococcus pneumoniae infection.


Assuntos
Hepcidinas/metabolismo , Macrófagos Alveolares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/metabolismo , Animais , Medula Óssea/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Fumar Cigarros/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Eritropoetina/metabolismo , Humanos , Ferro/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Fumaça
4.
Respir Res ; 21(1): 50, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050955

RESUMO

BACKGROUND: Although COPD among non-smokers (NS-COPD) is common, little is known about this phenotype. We compared NS-COPD subjects with smoking COPD (S-COPD) patients in a rural Indian population using a variety of clinical, physiological, radiological, sputum cellular and blood biomarkers. METHODS: Two hundred ninety subjects (118 healthy, 79 S-COPD, 93 NS-COPD) performed pre- and post-bronchodilator spirometry and were followed for 2 years to study the annual rate of decline in lung function. Body plethysmography, impulse oscillometry, inspiratory-expiratory HRCT, induced sputum cellular profile and blood biomarkers were compared between 49 healthy, 45 S-COPD and 55 NS-COPD subjects using standardized methods. Spirometric response to oral corticosteroids was measured in 30 female NS-COPD patients. RESULTS: Compared to all male S-COPD subjects, 47% of NS-COPD subjects were female, were younger by 3.2 years, had greater body mass index, a slower rate of decline in lung function (80 vs 130 mL/year), more small airways obstruction measured by impulse oscillometry (p < 0.001), significantly less emphysema (29% vs 11%) on CT scans, lower values in lung diffusion parameters, significantly less neutrophils in induced sputum (p < 0.05) and tended to have more sputum eosinophils. Hemoglobin and red cell volume were higher and serum insulin lower in S-COPD compared to NS-COPD. Spirometric indices, symptoms and quality of life were similar between S-COPD and NS-COPD. There was no improvement in spirometry in NS-COPD patients after 2 weeks of an oral corticosteroid. CONCLUSIONS: Compared to S-COPD, NS-COPD is seen in younger subjects with equal male-female predominance, is predominantly a small-airway disease phenotype with less emphysema, preserved lung diffusion and a slower rate of decline in lung function.


Assuntos
não Fumantes , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumantes , Fumar Tabaco/epidemiologia , Fumar Tabaco/fisiopatologia , Fatores Etários , Idoso , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fatores Sexuais , Espirometria/métodos
5.
FASEB J ; 33(2): 1605-1616, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30156909

RESUMO

Diseases of accelerated aging often occur together (multimorbidity), and their prevalence is increasing, with high societal and health care costs. Chronic obstructive pulmonary disease (COPD) is one such condition, in which one half of patients exhibit ≥4 age-related diseases. Diseases of accelerated aging share common molecular pathways, which lead to the detrimental accumulation of senescent cells. These senescent cells no longer divide but release multiple inflammatory proteins, known as the senescence-associated secretory phenotype, which may perpetuate and speed disease. Here, we show that inhibiting miR-570-3p, which is increased in COPD cells, reverses cellular senescence by restoring the antiaging molecule sirtuin-1. MiR-570-3p is induced by oxidative stress in airway epithelial cells through p38 MAP kinase-c-Jun signaling and drives senescence by inhibiting sirtuin-1. Inhibition of elevated miR-570-3p in COPD small airway epithelial cells, using an antagomir, restores sirtuin-1 and suppresses markers of cellular senescence (p16INK4a, p21Waf1, and p27Kip1), thereby restoring cellular growth by allowing progression through the cell cycle. MiR-570-3p inhibition also suppresses the senescence-associated secretory phenotype (matrix metalloproteinases-2/9, C-X-C motif chemokine ligand 8, IL-1ß, and IL-6). Collectively, these data suggest that inhibiting miR-570-3p rejuvenates cells via restoration of sirtuin-1, reducing many of the abnormalities associated with cellular senescence.-Baker, J. R., Vuppusetty, C., Colley, T., Hassibi, S., Fenwick, P. S., Donnelly, L. E., Ito, K., Barnes, P. J. MicroRNA-570 is a novel regulator of cellular senescence and inflammaging.


Assuntos
Senescência Celular/fisiologia , Inflamação/fisiopatologia , MicroRNAs/fisiologia , Idoso , Linhagem Celular , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Am J Respir Crit Care Med ; 200(5): 556-564, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860857

RESUMO

Cellular senescence is now considered an important driving mechanism for chronic lung diseases, particularly chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Cellular senescence is due to replicative and stress-related senescence with activation of p53 and p16INK4a, respectively, leading to activation of p21CIP1 and cell cycle arrest. Senescent cells secrete multiple inflammatory proteins known as the senescence-associated secretory phenotype, leading to low-grade chronic inflammation, which further drives senescence. Loss of key antiaging molecules sirtuin-1 and sirtuin-6 may be important in acceleration of aging and arises from oxidative stress reducing phosphatase PTEN (phosphatase tensin homolog), thereby activating PI3K (phosphoinositide-3-kinase) and mTOR (mammalian target of rapamycin). MicroRNA-34a (miR-34a), which is regulated by PI3K-mTOR signaling, plays a pivotal role in reducing sirtuin-1/6, and its inhibition with an antagomir results in their restoration, reducing markers of senescence, reducing senescence-associated secretory phenotype, and reversing cell cycle arrest in epithelial cells from peripheral airways of patients with COPD. miR-570 is also involved in reduction of sirtuin-1 and cellular senescence and is activated by p38 mitogen-activated protein kinase. These miRNAs may be released from cells in extracellular vesicles that are taken up by other cells, thereby spreading senescence locally within the lung but also outside the lung through the circulation; this may account for comorbidities of COPD and other lung diseases. Understanding the mechanisms of cellular senescence may result in new treatments for chronic lung disease, either by inhibiting PI3K-mTOR signaling, by inhibiting specific miRNAs, or by deletion of senescent cells with senolytic therapies, already shown to be effective in experimental lung fibrosis.


Assuntos
Antioxidantes/uso terapêutico , Senescência Celular/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Divisão Celular/fisiologia , Células Epiteliais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia
7.
Am J Respir Crit Care Med ; 199(12): 1496-1507, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562053

RESUMO

Rationale: Human rhinovirus (HRV) is a common cause of chronic obstructive pulmonary disease (COPD) exacerbations. Secondary bacterial infection is associated with more severe symptoms and delayed recovery. Alveolar macrophages clear bacteria from the lung and maintain lung homeostasis through cytokine secretion. These processes are defective in COPD. The effect of HRV on macrophage function is unknown. Objectives: To investigate the effect of HRV on phagocytosis and cytokine response to bacteria by alveolar macrophages and monocyte-derived macrophages (MDM) in COPD and healthy control subjects. Methods: Alveolar macrophages were obtained by bronchoscopy and MDM by adherence. Macrophages were exposed to HRV16 (multiplicity of infection 5), polyinosinic:polycytidylic acid (poly I:C) 30 µg/ml, IFN-ß 10 µg/ml, IFN-γ 10 µg/ml, or medium control for 24 hours. Phagocytosis of fluorescently labeled Haemophilus influenzae or Streptococcus pneumoniae was assessed by fluorimetry. CXCL8 (IL-8), IL-6, TNF-α (tumor necrosis factor-α), and IL-10 release was measured by ELISA. Measurements and Main Results: HRV significantly impaired phagocytosis of H. influenzae by 23% in MDM (n = 37; P = 0.004) and 18% in alveolar macrophages (n = 20; P < 0.0001) in COPD. HRV also significantly reduced phagocytosis of S. pneumoniae by 33% in COPD MDM (n = 20; P = 0.0192). There was no effect in healthy control subjects. Phagocytosis of H. influenzae was also impaired by poly I:C but not IFN-ß or IFN-γ in COPD MDM. HRV significantly reduced cytokine responses to H. influenzae. The IL-10 response to H. influenzae was significantly impaired by poly I:C, IFN-ß, and IFN-γ in COPD cells. Conclusions: HRV impairs phagocytosis of bacteria in COPD, which may lead to an outgrowth of bacteria. HRV also impairs cytokine responses to bacteria via the TLR3/IFN pathway, which may prevent resolution of inflammation leading to prolonged exacerbations in COPD.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Fagocitose/imunologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus/patogenicidade , Feminino , Humanos , Imunidade Inata , Londres , Masculino , Pessoa de Meia-Idade
8.
Am J Respir Cell Mol Biol ; 60(4): 445-453, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30395484

RESUMO

Neutrophilic inflammation is characteristic of chronic obstructive pulmonary disease (COPD); yet, there are no effective antiinflammatory therapies. The PDE4 inhibitor roflumilast is approved for use in COPD and suppresses sputum neutrophilia. The mechanism underlying this observation is unclear; therefore, this study addressed whether roflumilast directly affected neutrophil migration. Blood-derived neutrophils were isolated from nonsmokers, smokers, and patients with COPD, and chemotaxis was measured using Boyden chambers. Intracellular calcium ion concentration was measured by fluorimetry, and shape change and CD11b expression were measured by flow cytometry. Neutrophils from patients with COPD showed enhanced chemotactic responses toward both CXCL1 and leukotriene B4 compared with control cells. Chemotaxis was inhibited by both the active metabolite roflumilast N-oxide and rolipram in a concentration-dependent manner with no difference in responsiveness between subjects. Roflumilast N-oxide and rolipram were less efficacious against CXCL1 and leukotriene B4-mediated intracellular calcium ion concentration, suggesting that inhibition was not via this pathway. Both PDE4 inhibitors attenuated chemoattractant-mediated shape change and CD11b upregulation, suggesting common mechanisms. The stable cAMP analog 8-bromoadenosine 3',5'-cAMP inhibited chemotaxis, as did the direct Epac1 (exchange protein directly activated by cAMP 1) activator 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cAMP but not the direct protein kinase A activator N6-benzoyladenosine-3',5'-cAMP. These data suggest that roflumilast inhibits neutrophil chemotaxis directly via a cAMP-mediated mechanism requiring activation of Epac1 and that Epac1 activators could reduce COPD neutrophilic inflammation.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neutrófilos/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Doença Pulmonar Obstrutiva Crônica/patologia , Antígeno CD11b/metabolismo , Cálcio/metabolismo , Quimiocina CXCL1/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ciclopropanos/farmacologia , Humanos , Leucotrieno B4/metabolismo , Rolipram/farmacologia
9.
Eur Respir J ; 54(4)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31320451

RESUMO

Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.


Assuntos
Macrófagos Alveolares/imunologia , Mitocôndrias/metabolismo , Fagocitose/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Idoso , Bactérias , Sobrevivência Celular , Feminino , Haemophilus influenzae , Humanos , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Potencial da Membrana Mitocondrial , Microscopia Confocal , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Streptococcus pneumoniae
10.
Eur Respir J ; 53(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30578387

RESUMO

Lower airway colonisation with species of potentially pathogenic bacteria (PPB) is associated with defective bacterial phagocytosis, in monocyte-derived macrophages (MDMs) and alveolar macrophages, from tobacco smoke-associated chronic obstructive pulmonary disease (S-COPD) subjects. In the developing world, COPD among nonsmokers is largely due to biomass smoke (BMS) exposure; however, little is known about PPB colonisation and its association with impaired innate immunity in these subjects.We investigated the PPB load (Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Pseudomonas aeruginosa) in BMS-exposed COPD (BMS-COPD) subjects compared with S-COPD and spirometrically normal subjects. We also examined the association between PPB load and phagocytic activity of MDMs and lung function. Induced sputum and peripheral venous blood samples were collected from 18 healthy nonsmokers, 15 smokers without COPD, 16 BMS-exposed healthy subjects, 19 S-COPD subjects and 23 BMS-COPD subjects. PPB load in induced sputum and MDM phagocytic activity were determined using quantitative PCR and fluorimetry, respectively.Higher bacterial loads of S. pneumoniae, H. influenzae and P. aeruginosa were observed in BMS-COPD subjects. Increased PPB load in BMS-exposed subjects was significantly negatively associated with defective phagocytosis in MDMs and spirometric lung function indices (p<0.05).Increased PPB load in airways of BMS-COPD subjects is inversely associated with defective bacterial phagocytosis and lung function.


Assuntos
Carga Bacteriana , Macrófagos/microbiologia , Fagocitose , Doença Pulmonar Obstrutiva Crônica/microbiologia , Fumaça/efeitos adversos , Idoso , Biomassa , Estudos de Casos e Controles , Feminino , Volume Expiratório Forçado , Haemophilus influenzae , Humanos , Macrófagos/citologia , Macrófagos Alveolares/microbiologia , Masculino , Pessoa de Meia-Idade , Moraxella catarrhalis , Fenótipo , Pseudomonas aeruginosa , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Espirometria , Streptococcus pneumoniae , Capacidade Vital
11.
Respir Res ; 20(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606211

RESUMO

BACKGROUND: Galectin-3 is a 32 kDa protein secreted by macrophages involved in processes such as cell activation, chemotaxis and phagocytosis. Galectin-3 has previously been shown to improve the ability of airway macrophages to ingest apoptotic cells (efferocytosis) in chronic obstructive pulmonary disease (COPD) and may be of interest in non-eosinophilic asthma (NEA) which is also characterised by impaired efferocytosis. It was hypothesised that the addition of exogenous galectin-3 to monocyte-derived macrophages (MDMs) derived from donors with NEA would enhance their ability to engulf apoptotic granulocytes. METHODS: Eligible non-smoking adults with asthma (n = 19), including 7 with NEA and healthy controls (n = 10) underwent a clinical assessment, venepuncture and sputum induction. MDMs were co-cultured with apoptotic granulocytes isolated from healthy donors with or without exogenous recombinant galectin-3 (50 µg/mL) and efferocytosis was assessed by flow cytometry. Galectin-3 expression and localisation in MDMs was visualised by immunofluorescence staining and fluorescence microscopy. Galectin-3, interleukin (IL)-6 and CXCL8 secretion were measured in cell culture supernatants by ELISA and cytometric bead array. RESULTS: Baseline efferocytosis (mean (±standard deviation)) was lower in participants with asthma (33.2 (±17.7)%) compared with healthy controls (45.3 (±15.9)%; p = 0.081). Efferocytosis did not differ between the participants with eosinophilic asthma (EA) (31.4 (±19.2)%) and NEA (28.7 (±21.5)%; p = 0.748). Addition of galectin-3 significantly improved efferocytosis in asthma, particularly in NEA (37.8 (±18.1)%) compared with baseline (30.4 (±19.7)%; p = 0.012). Efferocytosis was not associated with any of the clinical outcomes but was negatively correlated with sputum macrophage numbers (Spearman r = - 0.671; p = 0.017). Galectin-3 was diffusely distributed in most MDMs but formed punctate structures in 5% of MDMs. MDM galectin-3 secretion was lower in asthma (9.99 (2.67, 15.48) ng/mL) compared with the healthy controls (20.72 (11.28, 27.89) ng/mL; p = 0.044) while IL-6 and CXCL8 levels were similar. CONCLUSIONS: Galectin-3 modulates macrophage function in asthma, indicating a potential role for galectin-3 to reverse impaired efferocytosis in NEA.


Assuntos
Apoptose/fisiologia , Asma/metabolismo , Galectina 3/biossíntese , Granulócitos/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas , Células Cultivadas , Feminino , Galectina 3/farmacologia , Galectinas , Granulócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Fagocitose/efeitos dos fármacos
12.
Am J Respir Crit Care Med ; 198(6): 739-750, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547002

RESUMO

RATIONALE: Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms and clinical consequences remain incompletely defined. OBJECTIVES: To examine the effect of COPD on AM phagocytic responses and identify the mechanisms, clinical consequences, and potential for therapeutic manipulation of these defects. METHODS: We isolated AMs and monocyte-derived macrophages (MDMs) from a cohort of patients with COPD and control subjects within the Medical Research Council COPDMAP consortium and measured phagocytosis of bacteria in relation to opsonic conditions and clinical features. MEASUREMENTS AND MAIN RESULTS: COPD AMs and MDMs have impaired phagocytosis of Streptococcus pneumoniae. COPD AMs have a selective defect in uptake of opsonized bacteria, despite the presence of antipneumococcal antibodies in BAL, not observed in MDMs or healthy donor AMs. AM defects in phagocytosis in COPD are significantly associated with exacerbation frequency, isolation of pathogenic bacteria, and health-related quality-of-life scores. Bacterial binding and initial intracellular killing of opsonized bacteria in COPD AMs was not reduced. COPD AMs have reduced transcriptional responses to opsonized bacteria, such as cellular stress responses that include transcriptional modules involving antioxidant defenses and Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated genes. Agonists of the cytoprotective transcription factor Nrf2 (sulforaphane and compound 7) reverse defects in phagocytosis of S. pneumoniae and nontypeable Haemophilus influenzae by COPD AMs. CONCLUSIONS: Patients with COPD have clinically relevant defects in opsonic phagocytosis by AMs, associated with impaired transcriptional responses to cellular stress, which are reversed by therapeutic targeting with Nrf2 agonists.


Assuntos
Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Isotiocianatos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Masculino , Pessoa de Meia-Idade , Fagocitose/fisiologia , Streptococcus pneumoniae , Sulfóxidos
14.
Thorax ; 73(4): 331-338, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29269441

RESUMO

BACKGROUND: Recent studies suggest that lung microbiome dysbiosis, the disease associated disruption of the lung microbial community, might play a key role in chronic obstructive pulmonary disease (COPD) exacerbations. However, characterising temporal variability of the microbiome from large longitudinal COPD cohorts is needed to better understand this phenomenon. METHODS: We performed a 16S ribosomal RNA survey of microbiome on 716 sputum samples collected longitudinally at baseline and exacerbations from 281 subjects with COPD at three UK clinical centres as part of the COPDMAP consortium. RESULTS: The microbiome composition was similar among centres and between stable and exacerbations except for a small significant decrease of Veillonella at exacerbations. The abundance of Moraxella was negatively associated with bacterial alpha diversity. Microbiomes were distinct between exacerbations associated with bacteria versus eosinophilic airway inflammation. Dysbiosis at exacerbations, measured as significant within subject deviation of microbial composition relative to baseline, was present in 41% of exacerbations. Dysbiosis was associated with increased exacerbation severity indicated by a greater fall in forced expiratory volume in one second, forced vital capacity and a greater increase in CAT score, particularly in exacerbations with concurrent eosinophilic inflammation. There was a significant difference of temporal variability of microbial alpha and beta diversity among centres. The variation of beta diversity significantly decreased in those subjects with frequent historical exacerbations. CONCLUSIONS: Microbial dysbiosis is a feature of some exacerbations and its presence, especially in concert with eosinophilic inflammation, is associated with more severe exacerbations indicated by a greater fall in lung function. TRIAL REGISTRATION NUMBER: Results, NCT01620645.


Assuntos
Microbiota , Moraxella/isolamento & purificação , Doença Pulmonar Obstrutiva Crônica/microbiologia , Escarro/microbiologia , Veillonella/isolamento & purificação , Disbiose , Inquéritos Epidemiológicos , Humanos , Reino Unido
16.
Am J Respir Crit Care Med ; 196(7): 845-855, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28557543

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) is characterized by impaired clearance of pulmonary bacteria. OBJECTIVES: The effect of COPD on alveolar macrophage (AM) microbicidal responses was investigated. METHODS: AMs were obtained from bronchoalveolar lavage from healthy donors or patients with COPD and challenged with opsonized serotype 14 Streptococcus pneumoniae. Cells were assessed for apoptosis, bactericidal activity, and mitochondrial reactive oxygen species (mROS) production. A transgenic mouse line in which the CD68 promoter ensures macrophage-specific expression of human induced myeloid leukemia cell differentiation protein Mcl-1 (CD68.hMcl-1) was used to model the molecular aspects of COPD. MEASUREMENTS AND MAIN RESULTS: COPD AMs had elevated levels of Mcl-1, an antiapoptotic B-cell lymphoma 2 family member, with selective reduction of delayed intracellular bacterial killing. CD68.hMcl-1 AMs phenocopied the microbicidal defect because transgenic mice demonstrated impaired clearance of pulmonary bacteria and increased neutrophilic inflammation. Murine bone marrow-derived macrophages and human monocyte-derived macrophages generated mROS in response to pneumococci, which colocalized with bacteria and phagolysosomes to enhance bacterial killing. The Mcl-1 transgene increased oxygen consumption rates and mROS expression in mock-infected bone marrow-derived macrophages but reduced caspase-dependent mROS production after pneumococcal challenge. COPD AMs also increased basal mROS expression, but they failed to increase production after pneumococcal challenge, in keeping with reduced intracellular bacterial killing. The defect in COPD AM intracellular killing was associated with a reduced ratio of mROS/superoxide dismutase 2. CONCLUSIONS: Up-regulation of Mcl-1 and chronic adaption to oxidative stress alter mitochondrial metabolism and microbicidal function, reducing the delayed phase of intracellular bacterial clearance in COPD.


Assuntos
Anti-Infecciosos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Western Blotting , Lavagem Broncoalveolar , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
17.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L230-L239, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522564

RESUMO

The phosphatidylinositol 3-kinase (PI3K) pathway is activated in chronic obstructive pulmonary disease (COPD), but the regulatory mechanisms for this pathway are yet to be elucidated. The aim of this study was to determine the expression and role of phosphatase and tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of the PI3K pathway, in COPD. PTEN protein expression was measured in the peripheral lung of COPD patients compared with smoking and nonsmoking controls. The direct influence of cigarette smoke extract (CSE) on PTEN expression was assessed using primary lung epithelial cells and a cell line (BEAS-2B) in the presence or absence of l-buthionine-sulfoximine (BSO) to deplete intracellular glutathione. The impact of PTEN knockdown by RNA interference on cytokine production was also examined. In peripheral lung, PTEN protein was significantly decreased in patients with COPD compared with the subjects without COPD (P < 0.001) and positively correlated with the severity of airflow obstruction (forced expiratory volume in 1-s percent predicted; r = 0.50; P = 0.0012). Conversely, phosphorylated Akt, as a marker of PI3K activation, showed a negative correlation with PTEN protein levels (r = -0.41; P = 0.0042). In both primary bronchial epithelial cells and BEAS-2B cells, CSE decreased PTEN protein, which was reversed by N-acetyl cysteine treatment. PTEN knockdown potentiated Akt phosphorylation and enhanced production of proinflammatory cytokines, such as IL-6, CXCL8, CCL2, and CCL5. In conclusion, oxidative stress reduces PTEN protein levels, which may result in increased PI3K signaling and amplification of inflammation in COPD.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fumaça/efeitos adversos , Fumar/efeitos adversos
20.
Eur Respir J ; 47(4): 1093-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26965295

RESUMO

Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. However, isolated lymphocytes failed to migrate and isolated monocytes from COPD patients lost their enhanced migratory capacity. Both monocytes and lymphocytes cooperate to enhance migration towards CXCR3 chemokines and CCL5. This may contribute to increased numbers of macrophages and T-cells in the lungs of COPD patients, and inhibition of recruitment using selective antagonists might be a treatment to reduce the inflammatory response in COPD.


Assuntos
Linfócitos T CD8-Positivos/citologia , Monócitos/citologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR3/metabolismo , Adulto , Idoso , Movimento Celular , Quimiocinas/metabolismo , Quimiotaxia , Feminino , Citometria de Fluxo , Humanos , Inflamação , Leucócitos Mononucleares/citologia , Ligantes , Pulmão/metabolismo , Macrófagos/citologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA