Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Brain ; 145(10): 3666-3680, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35552612

RESUMO

While several studies have attributed the development of tumour-associated seizures to an excitatory-inhibitory imbalance, we have yet to resolve the spatiotemporal interplay between different types of neuron in glioma-infiltrated cortex. Herein, we combined methods for single unit analysis of microelectrode array recordings with wide-field optical mapping of Thy1-GCaMP pyramidal cells in an ex vivo acute slice model of diffusely infiltrating glioma. This enabled simultaneous tracking of individual neurons from both excitatory and inhibitory populations throughout seizure-like events. Moreover, our approach allowed for observation of how the crosstalk between these neurons varied spatially, as we recorded across an extended region of glioma-infiltrated cortex. In tumour-bearing slices, we observed marked alterations in single units classified as putative fast-spiking interneurons, including reduced firing, activity concentrated within excitatory bursts and deficits in local inhibition. These results were correlated with increases in overall excitability. Mechanistic perturbation of this system with the mTOR inhibitor AZD8055 revealed increased firing of putative fast-spiking interneurons and restoration of local inhibition, with concomitant decreases in overall excitability. Altogether, our findings suggest that diffusely infiltrating glioma affect the interplay between excitatory and inhibitory neuronal populations in a reversible manner, highlighting a prominent role for functional mechanisms linked to mTOR activation.


Assuntos
Glioma , Células Piramidais , Humanos , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Neurônios/fisiologia , Convulsões , Serina-Treonina Quinases TOR
2.
Proc Natl Acad Sci U S A ; 116(31): 15550-15559, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31235578

RESUMO

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.


Assuntos
Carcinogênese/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patologia , Glioblastoma/genética , Glioblastoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Miosina não Muscular Tipo IIA/genética
3.
Neurobiol Dis ; 134: 104676, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31731042

RESUMO

The purpose of this study is to develop a platform in which the cellular and molecular underpinnings of chronic focal neocortical lesional epilepsy can be explored and use it to characterize seizure-like events (SLEs) in an ex vivo model of infiltrating high-grade glioma. Microelectrode arrays were used to study electrophysiologic changes in ex vivo acute brain slices from a PTEN/p53 deleted, PDGF-B driven mouse model of high-grade glioma. Electrode locations were co-registered to the underlying histology to ascertain the influence of the varying histologic landscape on the observed electrophysiologic changes. Peritumoral, infiltrated, and tumor sites were sampled in tumor-bearing slices. Following the addition of zero Mg2+ solution, all three histologic regions in tumor-bearing slices showed significantly greater increases in firing rates when compared to the control sites. Tumor-bearing slices demonstrated increased proclivity for SLEs, with 40 events in tumor-bearing slices and 5 events in control slices (p-value = .0105). Observed SLEs were characterized by either low voltage fast (LVF) onset patterns or short bursts of repetitive widespread, high amplitude low frequency discharges. Seizure foci comprised areas from all three histologic regions. The onset electrode was found to be at the infiltrated margin in 50% of cases and in the peritumoral region in 36.9% of cases. These findings reveal a landscape of histopathologic and electrophysiologic alterations associated with ictogenesis and spread of tumor-associated seizures.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Glioma/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Potenciais de Ação , Animais , Neoplasias Encefálicas/complicações , Modelos Animais de Doenças , Glioma/complicações , Camundongos Transgênicos , Microeletrodos , Convulsões/complicações
4.
Proc Natl Acad Sci U S A ; 111(34): 12550-5, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114226

RESUMO

Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtype-specific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/classificação , Meios de Contraste , Feminino , Glioblastoma/classificação , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , RNA Neoplásico/genética , Análise de Sequência de RNA , Transcriptoma , Microambiente Tumoral
5.
J Biol Chem ; 289(11): 7897-906, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24482227

RESUMO

We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck(-/-) bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck(-/-) BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP(-/-) BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.


Assuntos
Macrófagos/citologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Movimento Celular , Quimiotaxia , Quimiotaxia de Leucócito , Colágeno/química , Cruzamentos Genéticos , Células Endoteliais/citologia , Macrófagos/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Isoformas de Proteínas/química , Interferência de RNA , Migração Transendotelial e Transepitelial , Tirosina/química
6.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895402

RESUMO

While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFß, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma. Highlights: • Resistance to non-microtubule spindle inhibitors limits their efficacy in glioblastoma and depends on STAT3.• Resistance goes hand in hand with development of therapy induced senescence (TIS).• Spindle inhibitor resistant glioblastomas consist of three cell subpopulations-proliferative, quiescent, and TIS-with proliferative cells sensitive and quiescent and TIS cells resistant.• TIS cells secrete TGFß, which induces proliferative cells to become quiescent, thereby expanding the population of resistant cells in a spindle inhibitor resistant glioblastoma• Treatment with a STAT3 inhibitor kills TIS cells and restores sensitivity to spindle inhibitors.

7.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746089

RESUMO

We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights: MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.

8.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
9.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293120

RESUMO

Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.

10.
Nat Commun ; 14(1): 1187, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864031

RESUMO

Ferroptosis is mediated by lipid peroxidation of phospholipids containing polyunsaturated fatty acyl moieties. Glutathione, the key cellular antioxidant capable of inhibiting lipid peroxidation via the activity of the enzyme glutathione peroxidase 4 (GPX-4), is generated directly from the sulfur-containing amino acid cysteine, and indirectly from methionine via the transsulfuration pathway. Herein we show that cysteine and methionine deprivation (CMD) can synergize with the GPX4 inhibitor RSL3 to increase ferroptotic cell death and lipid peroxidation in both murine and human glioma cell lines and in ex vivo organotypic slice cultures. We also show that a cysteine-depleted, methionine-restricted diet can improve therapeutic response to RSL3 and prolong survival in a syngeneic orthotopic murine glioma model. Finally, this CMD diet leads to profound in vivo metabolomic, proteomic and lipidomic alterations, highlighting the potential for improving the efficacy of ferroptotic therapies in glioma treatment with a non-invasive dietary modification.


Assuntos
Ferroptose , Glioma , Humanos , Animais , Camundongos , Metionina , Cisteína , Proteômica , Racemetionina , Glioma/tratamento farmacológico
11.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865302

RESUMO

Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.

12.
Nat Commun ; 14(1): 2586, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142563

RESUMO

Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Glioma/genética , Astrócitos/metabolismo , Microambiente Tumoral/genética
13.
Cell Rep ; 39(12): 110991, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732128

RESUMO

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Assuntos
Antimitóticos , Glioblastoma , Animais , Antimitóticos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Cinesinas , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
14.
J Biol Chem ; 285(30): 23296-308, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20472934

RESUMO

Conventional protein kinase C (PKC) isoforms are essential serine/threonine kinases regulating many signaling networks. At cell adhesion sites, PKCalpha can impact the actin cytoskeleton through its influence on RhoGTPases, but the intermediate steps are not well known. One important regulator of RhoGTPase function is the multifunctional guanine nucleotide dissociation inhibitor RhoGDIalpha that sequesters several related RhoGTPases in an inactive form, but it may also target them through interactions with actin-associated proteins. Here, it is demonstrated that conventional PKC phosphorylates RhoGDIalpha on serine 34, resulting in a specific decrease in affinity for RhoA but not Rac1 or Cdc42. The mechanism of RhoGDIalpha phosphorylation is distinct, requiring the kinase and phosphatidylinositol 4,5-bisphosphate, consistent with recent evidence that the inositide can activate, localize, and orient PKCalpha in membranes. Phosphospecific antibodies reveal endogenous phosphorylation in several cell types that is sensitive to adhesion events triggered, for example, by hepatocyte growth factor. Phosphorylation is also sensitive to PKC inhibition. Together with fluorescence resonance energy transfer microscopy sensing GTP-RhoA levels, the data reveal a common pathway in cell adhesion linking two essential mediators, conventional PKC and RhoA.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/química , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteína Quinase C/metabolismo , Serina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Ativação Enzimática , Fibroblastos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Fosforilação , Ratos , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico , Proteína rhoA de Ligação ao GTP/metabolismo
15.
J Cell Sci ; 122(Pt 21): 3873-82, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19808890

RESUMO

Podosomes, adhesion structures capable of matrix degradation, have been linked with the ability of cells to perform chemotaxis and invade tissues. Wiskott-Aldrich Syndrome protein (WASp), an effector of the RhoGTPase Cdc42 and a Src family kinase substrate, regulates macrophage podosome formation. In this study, we demonstrate that WASp is active in podosomes by using TIRF-FRET microscopy. Pharmacological and RNA interference approaches suggested that continuous WASp activity is required for podosome formation and function. Rescue experiments using point mutations demonstrate an absolute requirement for Cdc42 binding to WASp in podosome formation. Although tyrosine phosphorylation was not absolutely required for podosome formation, phosphorylation did regulate the rate of podosome nucleation and actin filament stability. Importantly, WASp tyrosine phosphorylation does not alter WASp activation, instead phosphorylation appears to be important for the restriction of WASp activity to podosomes. In addition, the matrix-degrading ability of cells requires WASp phosphorylation. Chemotactic responses to CSF-1 were also attenuated in the absence of endogenous WASp, which could not be rescued with either tyrosine mutation. These results suggest a more complex role for tyrosine phosphorylation than simply in the regulation of WASp activity, and suggest a link between podosome dynamics and macrophage migration.


Assuntos
Extensões da Superfície Celular/metabolismo , Quimiotaxia , Matriz Extracelular/metabolismo , Macrófagos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Linhagem Celular , Extensões da Superfície Celular/genética , Células Cultivadas , Humanos , Fosforilação , Ligação Proteica , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Exp Cell Res ; 316(20): 3406-16, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20599953

RESUMO

Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP. To test whether N-WASP can compensate for the loss of WASP and restore actin cytoskeleton integrity, N-WASP was overexpressed in macrophages, in which endogenous WASP expression was reduced by short hairpin RNA (shWASP cells). Many of the defects associated with the loss of WASP, such as podosome-dependent matrix degradation and chemotaxis were corrected when N-WASP was expressed at equimolar level to that of the wild-type WASP. Furthermore, the ability of N-WASP to partially compensate for the loss of WASP may be physiologically relevant since activated murine WASP-deficient peritoneal macrophages, which show enhanced N-WASP expression, also show an increase in matrix degradation. Our study suggests that expression levels of WASP and N-WASP may influence their roles in actin cytoskeleton rearrangement and shed light to the complex intertwining roles WASP and N-WASP play in macrophages.


Assuntos
Quimiotaxia , Macrófagos/citologia , Macrófagos/metabolismo , Pseudópodes/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Forma Celular/genética , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Chlorocebus aethiops , Células Dendríticas/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Expressão Gênica/genética , Ativação de Macrófagos/imunologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pseudópodes/genética , Interferência de RNA , Tioglicolatos/imunologia , Transfecção , Proteína da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
17.
Genome Med ; 13(1): 88, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011400

RESUMO

BACKGROUND: Macrophages are the most common infiltrating immune cells in gliomas and play a wide variety of pro-tumor and anti-tumor roles. However, the different subpopulations of macrophages and their effects on the tumor microenvironment remain poorly understood. METHODS: We combined new and previously published single-cell RNA-seq data from 98,015 single cells from a total of 66 gliomas to profile 19,331 individual macrophages. RESULTS: Unsupervised clustering revealed a pro-tumor subpopulation of bone marrow-derived macrophages characterized by the scavenger receptor MARCO, which is almost exclusively found in IDH1-wild-type glioblastomas. Previous studies have implicated MARCO as an unfavorable marker in melanoma and non-small cell lung cancer; here, we find that bulk MARCO expression is associated with worse prognosis and mesenchymal subtype. Furthermore, MARCO expression is significantly altered over the course of treatment with anti-PD1 checkpoint inhibitors in a response-dependent manner, which we validate with immunofluorescence imaging. CONCLUSIONS: These findings illustrate a novel macrophage subpopulation that drives tumor progression in glioblastomas and suggest potential therapeutic targets to prevent their recruitment.


Assuntos
Biomarcadores Tumorais , Glioblastoma/diagnóstico , Glioblastoma/etiologia , Receptores Imunológicos/genética , Análise de Célula Única , Macrófagos Associados a Tumor/metabolismo , Comunicação Celular/genética , Imunofluorescência , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Isocitrato Desidrogenase/genética , Mutação , Prognóstico , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/patologia
18.
Genome Med ; 13(1): 82, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975634

RESUMO

BACKGROUND: Preclinical studies require models that recapitulate the cellular diversity of human tumors and provide insight into the drug sensitivities of specific cellular populations. The ideal platform would enable rapid screening of cell type-specific drug sensitivities directly in patient tumor tissue and reveal strategies to overcome intratumoral heterogeneity. METHODS: We combine multiplexed drug perturbation in acute slice culture from freshly resected tumors with single-cell RNA sequencing (scRNA-seq) to profile transcriptome-wide drug responses in individual patients. We applied this approach to drug perturbations on slices derived from six glioblastoma (GBM) resections to identify conserved drug responses and to one additional GBM resection to identify patient-specific responses. RESULTS: We used scRNA-seq to demonstrate that acute slice cultures recapitulate the cellular and molecular features of the originating tumor tissue and the feasibility of drug screening from an individual tumor. Detailed investigation of etoposide, a topoisomerase poison, and the histone deacetylase (HDAC) inhibitor panobinostat in acute slice cultures revealed cell type-specific responses across multiple patients. Etoposide has a conserved impact on proliferating tumor cells, while panobinostat treatment affects both tumor and non-tumor populations, including unexpected effects on the immune microenvironment. CONCLUSIONS: Acute slice cultures recapitulate the major cellular and molecular features of GBM at the single-cell level. In combination with scRNA-seq, this approach enables cell type-specific analysis of sensitivity to multiple drugs in individual tumors. We anticipate that this approach will facilitate pre-clinical studies that identify effective therapies for solid tumors.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , RNA-Seq , Análise de Célula Única , Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Microscopia , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Sensibilidade e Especificidade , Análise de Célula Única/métodos , Resultado do Tratamento , Microambiente Tumoral/genética , Sequenciamento Completo do Genoma
19.
iScience ; 23(12): 101802, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33299973

RESUMO

Invasion and proliferation are defining phenotypes of cancer, and in glioblastoma blocking one stimulates the other, implying that effective therapy must inhibit both, ideally through a single target that is also dispensable for normal tissue function. The molecular motor myosin 10 meets these criteria. Myosin 10 knockout mice can survive to adulthood, implying that normal cells can compensate for its loss; its deletion impairs invasion, slows proliferation, and prolongs survival in murine models of glioblastoma. Myosin 10 deletion also enhances tumor dependency on the DNA damage and the metabolic stress responses and induces synthetic lethality when combined with inhibitors of these processes. Our results thus demonstrate that targeting myosin 10 is active against glioblastoma by itself, synergizes with other clinically available therapeutics, may have acceptable side effects in normal tissues, and has potential as a heretofore unexplored therapeutic approach for this disease.

20.
Cell Rep ; 31(2): 107500, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294436

RESUMO

Diffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics. The bilateral synchrony of spontaneous neuronal activity gradually decreases in glioma-infiltrated cortical regions, while neurovascular coupling becomes progressively disrupted compared to uninvolved cortex. Over time, mice develop diverse patterns of high amplitude discharges and eventually generalized seizures that appear to originate at the tumors' infiltrative margins. Interictal and seizure events exhibit positive neurovascular coupling in uninfiltrated cortex; however, glioma-infiltrated regions exhibit disrupted hemodynamic responses driving seizure-evoked hypoxia. These results reveal a landscape of complex physiological interactions occurring during glioma progression and present new opportunities for exploring novel biomarkers and therapeutic targets.


Assuntos
Glioma/fisiopatologia , Acoplamento Neurovascular/fisiologia , Animais , Encéfalo/fisiopatologia , Córtex Cerebral/metabolismo , Progressão da Doença , Hemodinâmica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA