Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 257: 119251, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568349

RESUMO

Intracranial EEG (iEEG) performed during the pre-surgical evaluation of refractory epilepsy provides a great opportunity to investigate the neurophysiology of human cognitive functions with exceptional spatial and temporal precisions. A difficulty of the iEEG approach for cognitive neuroscience, however, is the potential variability across patients in the anatomical location of implantations and in the functional responses therein recorded. In this context, we designed, implemented, and tested a user-friendly and efficient open-source toolbox for Multi-Patient Intracranial data Analysis (MIA), which can be used as standalone program or as a Brainstorm plugin. MIA helps analyzing event related iEEG signals while following good scientific practice recommendations, such as building reproducible analysis pipelines and applying robust statistics. The signals can be analyzed in the temporal and time-frequency domains, and the similarity of time courses across patients or contacts can be assessed within anatomical regions. MIA allows visualizing all these results in a variety of formats at every step of the analysis. Here, we present the toolbox architecture and illustrate the different steps and features of the analysis pipeline using a group dataset collected during a language task.


Assuntos
Neurociência Cognitiva , Epilepsia Resistente a Medicamentos , Encéfalo/fisiologia , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Humanos , Neurofisiologia
2.
Neuroimage ; 257: 119056, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283287

RESUMO

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.


Assuntos
Eletroencefalografia , Humanos
3.
Psychol Sci ; 28(4): 414-426, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28406383

RESUMO

We provide a quantitative assessment of the parallel-processing hypothesis included in various language-processing models. First, we highlight the importance of reasoning about cognitive processing at the level of single trials rather than using averages. Then, we report the results of an experiment in which the hypothesis was tested at an unprecedented level of granularity with intracerebral data recorded during a picture-naming task. We extracted patterns of significant high-gamma activity from multiple patients and combined them into a single analysis framework that identified consistent patterns. Average signals from different brain regions, presumably indexing distinct cognitive processes, revealed a large degree of concurrent activity. In comparison, at the level of single trials, the temporal overlap of detected significant activity was unexpectedly low, with the exception of activity in sensory cortices. Our novel methodology reveals some limits on the degree to which word production involves parallel processing.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Ritmo Gama/fisiologia , Idioma , Reconhecimento Visual de Modelos/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA