Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 82: 102229, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355202

RESUMO

Hypoxic pulmonary hypertension (HPH) is a devastating disease worldwide; however, effective therapeutic drugs are lacking. This study investigated the effects and underlying mechanisms of LCZ696 treatment on hypoxia-induced pulmonary hypertension. Male Sprague-Dawley (SD) rats were kept in a hypobaric chamber with an oxygen concentration of 5% for 4 weeks. Rats were treated with either LCZ696 (18 mg/kg, 36 mg/kg, and 72 mg/kg) or sildenafil. The mean pulmonary artery pressure (mPAP), right ventricle hypertrophy index (RVHI), and lung system index were measured. Hematoxylin-eosin (HE) staining, Masson staining, and immunofluorescence staining were used for histological analysis. Enzyme linked immunosorbent assay (ELISA) kits were used to determine the concentrations of inflammatory and hypoxia-related factors. Western blotting was used to examine the expression of apoptotic and PI3K/AKT signaling pathway proteins in rat lung tissue. Hypoxia increased mPAP, RVHI, and lung system index and induced pulmonary vascular remodeling, pulmonary arteriomyosis, and pulmonary artery fibrosis. LCZ696 treatment reduced the increase in mPAP, RVHI, and the lung system index and ameliorated the induced pathological changes. Hypoxia upregulated expression of NF-kB, TNF-α, IL-6, HIF-1α, and Vascular endothelial growth factor (VEGF), decreased the ratio of Bax/Bcl-2, and activated the PI3K/AKT signaling pathway in lung tissue, and these effects were partially reversed by treatment with LCZ696. These results demonstrated that LCZ696 can ameliorate hypoxia-induced HPH by suppressing apoptosis, inhibiting the inflammatory response, and inhibiting the PI3K/AKT signaling pathway. It provides a reference for clinical rational drug use and lays a foundation for the study of HPH therapeutic drugs.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Ratos , Masculino , Animais , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais , Fibrose Pulmonar/patologia
2.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 12): o3495, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22199967

RESUMO

The title compound, C(25)H(24)ClNO(3), has three contiguous chiral centres. The absolute structure was determined by anomalous dispersion. The chloro-benzene ring is inclined to the two phenyl rings by 14.98 (9) and 59.05 (9)°. The two phenyl rings are inclined to one another by 49.51 (10)°. In the crystal, neighbouring mol-ecules are linked via C-H⋯O hydrogen bonds, forming chains propagating along [010]. There is also a C-H⋯π inter-action present that leads to the formation of a three-dimensional network.

3.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(6): 533-536, 2019 Nov.
Artigo em Zh | MEDLINE | ID: mdl-32239860

RESUMO

OBJECTIVE: To investigate the interventive effects of Salvia przewalskii Maxim.(SPM)on high-altitude pulmonary hypertension(HAPH)in rats and possible mechanism. METHODS: The male SD rats were randomly divided into the control group, the hypoxia group and SPM(0.5 g/kg,1 g/kg and 2 g/kg) group. There were 14 rats in each group. The rats in control group were feed in Xining(with an altitude about 2 260 m), and the other group rats were all feed in Maduo county people's hospital(with an altitude about 4 260 m). The rats in SPM groups were treated with SPM at the doses of 0.5 g/kg,1 g/kg and 2 g/kg by gavage respectively (100 g/ml). The rats in control and the hypoxia groups were received equal volume of distilled water, once a day. After 4 weeks, the mean pulmonary artery pressure (mPAP) of rats was measured and the same part of lung tissue of each rat was collected and stored in liquid nitrogen. Then the relative mRNA expression levels of the proliferation cell nuclear antigen(PCNA), the cell cycle dependent kinase 4(CDK4), CyclinD1, RhoA, ROCK1, ROCK2 in lung tissues of each group rats were all tested by RT-PCR. RESULTS: Compared with the control group, the mPAP and the relative mRNA expression levels of PCNA, CDK4, CyclinD1, RhoA, ROCK1 and ROCK2 were increased significantly in the hypoxia group(P<0.01). Compared with the hypoxia group, the mPAP and the relative mRNA expression levels of PCNA, CDK4, CyclinD1, RhoA, ROCK1 and ROCK2 in the lung tissues of the SPM group rats were all decreased significantly(P< 0.05 or P<0.01). CONCLUSION: SPM can prevent the HAPH in rats, and the mechanisms may be related to the inhibition of the excessive proliferation of smooth muscle cells in pulmonary artery and the excessive activation of the RhoA/Rho kinase(ROCK) signaling pathway.


Assuntos
Doença da Altitude/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Salvia/química , Animais , Masculino , Artéria Pulmonar , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA