Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297924

RESUMO

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Assuntos
Vírus de DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Amoeba/virologia , Corantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteômica , Vírion/metabolismo
2.
Mol Cell ; 69(1): 36-47.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249653

RESUMO

Recent integrative epigenome analyses highlight the importance of functionally distinct chromatin states for accurate cell function. How these states are established and maintained is a matter of intense investigation. Here, we present evidence for DNA damage as an unexpected means to shape a protective chromatin environment at regions of recurrent replication stress (RS). Upon aberrant fork stalling, DNA damage signaling and concomitant H2AX phosphorylation coordinate the FACT-dependent deposition of macroH2A1.2, a histone variant that promotes DNA repair by homologous recombination (HR). MacroH2A1.2, in turn, facilitates the accumulation of the tumor suppressor and HR effector BRCA1 at replication forks to protect from RS-induced DNA damage. Consequently, replicating primary cells steadily accrue macroH2A1.2 at fragile regions, whereas macroH2A1.2 loss in these cells triggers DNA damage signaling-dependent senescence, a hallmark of RS. Altogether, our findings demonstrate that recurrent DNA damage contributes to the chromatin landscape to ensure the epigenomic integrity of dividing cells.


Assuntos
Carcinogênese/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Histonas/genética , Recombinação Homóloga/genética , Proteína BRCA1/metabolismo , Divisão Celular/genética , Células Cultivadas , Senescência Celular/genética , Instabilidade Genômica/fisiologia , Humanos , Transdução de Sinais/genética
3.
Microbiology (Reading) ; 163(7): 961-969, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28691656

RESUMO

Small single-stranded nucleic acid phages effect lysis by expressing a single protein, the amurin, lacking muralytic enzymatic activity. Three amurins have been shown to act like 'protein antibiotics' by inhibiting cell-wall biosynthesis. However, the L lysis protein of the canonical ssRNA phage MS2, a 75 aa polypeptide, causes lysis by an unknown mechanism without affecting net peptidoglycan synthesis. To identify residues important for lytic function, randomly mutagenized alleles of L were generated, cloned into an inducible plasmid and the transformants were selected on agar containing the inducer. From a total of 396 clones, 67 were unique single base-pair changes that rendered L non-functional, of which 44 were missense mutants and 23 were nonsense mutants. Most of the non-functional missense alleles that accumulated in levels comparable to the wild-type allele are localized in the C-terminal half of L, clustered in and around an LS dipeptide sequence. The LS motif was used to align L genes from ssRNA phages lacking any sequence similarity to MS2 or to each other. This alignment revealed a conserved domain structure, in terms of charge, hydrophobic character and predicted helical content. None of the missense mutants affected membrane-association of L. Several of the L mutations in the central domains were highly conservative and recessive, suggesting a defect in a heterotypic protein-protein interaction, rather than in direct disruption of the bilayer structure, as had been previously proposed for L.


Assuntos
Levivirus/genética , Proteínas Estruturais Virais/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Levivirus/química , Levivirus/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo
4.
J Mol Biol ; 434(13): 167630, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595162

RESUMO

Histone chaperones facilitate the assembly and disassembly of nucleosomes and regulate DNA accessibility for critical cellular processes. Spn1 is an essential, highly conserved histone chaperone that functions in transcription initiation and elongation in a chromatin context. Here we demonstrate that Spn1 binds H3-H4 with low nanomolar affinity, residues 85-99 within the acidic N-terminal region of Spn1 are required for H3-H4 binding, and Spn1 binding to H3-H4 dimers does not impede (H3-H4)2 tetramer formation. Previous work has shown the central region of Spn1 (residues 141-305) is important for interaction with Spt6, another conserved and essential histone chaperone. We show that the C-terminal region of Spn1 also contributes to Spt6 binding and is critical for Spn1 binding to nucleosomes. We also show Spt6 preferentially binds H3-H4 tetramers and Spt6 competes with nucleosomes for Spn1 binding. Combined with previous results, this indicates the Spn1-Spt6 complex does not bind nucleosomes. In contrast to nucleosome binding, we found that the Spn1-Spt6 complex can bind H3-H4 dimers and tetramers and H2A-H2B to form ternary complexes. These important results provide new information about the functions of Spn1, Spt6, and the Spn1-Spt6 complex, two essential and highly conserved histone chaperones.


Assuntos
Chaperonas de Histonas/metabolismo , Histonas , Nucleossomos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Cromatina , DNA/metabolismo , Chaperonas de Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química
5.
Nat Struct Mol Biol ; 29(4): 403-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35422519

RESUMO

The histone variant CENP-A is the epigenetic determinant for the centromere, where it is interspersed with canonical H3 to form a specialized chromatin structure that nucleates the kinetochore. How nucleosomes at the centromere arrange into higher order structures is unknown. Here we demonstrate that the human CENP-A-interacting protein CENP-N promotes the stacking of CENP-A-containing mononucleosomes and nucleosomal arrays through a previously undefined interaction between the α6 helix of CENP-N with the DNA of a neighboring nucleosome. We describe the cryo-EM structures and biophysical characterization of such CENP-N-mediated nucleosome stacks and nucleosomal arrays and demonstrate that this interaction is responsible for the formation of densely packed chromatin at the centromere in the cell. Our results provide first evidence that CENP-A, together with CENP-N, promotes specific chromatin higher order structure at the centromere.


Assuntos
Cromatina , Nucleossomos , Autoantígenos/genética , Centrômero/metabolismo , Proteína Centromérica A/química , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos
6.
Curr Protoc Mol Biol ; 133(1): e131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33351266

RESUMO

The biochemical and biophysical investigation of proteins, nucleic acids, and the assemblies that they form yields essential information to understand complex systems. Analytical ultracentrifugation (AUC) represents a broadly applicable and information-rich method for investigating macromolecular characteristics such as size, shape, stoichiometry, and binding properties, all in the true solution-state environment that is lacking in most orthogonal methods. Despite this, AUC remains underutilized relative to its capabilities and potential in the fields of biochemistry and molecular biology. Although there has been a rapid development of computing power and AUC analysis tools in this millennium, fewer advancements have occurred in development of new applications of the technique, leaving these powerful instruments underappreciated and underused in many research institutes. With AUC previously limited to absorbance and Rayleigh interference optics, the addition of fluorescence detection systems has greatly enhanced the applicability of AUC to macromolecular systems that are traditionally difficult to characterize. This overview provides a resource for novices, highlighting the potential of AUC and encouraging its use in their research, as well as for current users, who may benefit from our experience. We discuss the strengths of fluorescence-detected AUC and demonstrate the power of even simple AUC experiments to answer practical and fundamental questions about biophysical properties of macromolecular assemblies. We address the development and utility of AUC, explore experimental design considerations, present case studies investigating properties of biological macromolecules that are of common interest to researchers, and review popular analysis approaches. © 2020 The Authors.


Assuntos
Substâncias Macromoleculares/isolamento & purificação , Ultracentrifugação/métodos , Algoritmos , Análise de Dados , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química , Modelos Teóricos , Software , Espectrometria de Fluorescência/métodos , Ultracentrifugação/instrumentação
7.
Life Sci Alliance ; 1(4): e201800107, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456370

RESUMO

Human FAcilitates Chromatin Transcription (hFACT) is a conserved histone chaperone that was originally described as a transcription elongation factor with potential nucleosome assembly functions. Here, we show that FACT has moderate tetrasome assembly activity but facilitates H2A-H2B deposition to form hexasomes and nucleosomes. In the process, FACT tethers components of the nucleosome through interactions with H2A-H2B, resulting in a defined intermediate complex comprising FACT, a histone hexamer, and DNA. Free DNA extending from the tetrasome then competes FACT off H2A-H2B, thereby promoting hexasome and nucleosome formation. Our studies provide mechanistic insight into how FACT may stabilize partial nucleosome structures during transcription or nucleosome assembly, seemingly facilitating both nucleosome disassembly and nucleosome assembly.

8.
Genome Announc ; 3(1)2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635027

RESUMO

Citrobacter freundii and other Gram-negative opportunistic pathogens necessitate concern from the public health sector. Bacteriophages that kill such pathogens may be useful in the control and containment of these infections. Here, we describe the genome of a newly isolated T4-like myophage of C. freundii, Moon, and present its features.

9.
J Am Osteopath Assoc ; 111(1): 44-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21258016

RESUMO

Premature newborns and infants are usually required to successfully transition from gavage to nipple feeding using breast or bottle before discharge from the hospital. This transition is frequently the last discharge skill attained. Delayed acquisition of this skill may substantially prolong hospital length of stay. The authors describe a case of hospitalized premature twins who had considerable delays in attaining nipple-feeding skills. Because of their inability to take all feedings by nipple, preparation for surgical placement of gastrostomy tubes was initiated. Before the surgeries were scheduled, the inpatient osteopathic manipulative medicine service was consulted, and the twins received a series of evaluations and osteopathic manipulative treatment (OMT) sessions. During the OMT course, the twins' nipple feeding skills progressed to full oral feeding, which allowed them to be discharged to home without placement of gastrostomy tubes. The authors also review the literature and discuss the development of nipple feeding in premature newborns and infants and the use of OMT in the management of nipple feeding dysfunction.


Assuntos
Aleitamento Materno , Recém-Nascido Prematuro/fisiologia , Osteopatia/métodos , Mamilos , Alimentação com Mamadeira , Feminino , Humanos , Recém-Nascido , Mamilos/fisiologia , Gravidez , Gêmeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA