Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 494: 60-70, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509125

RESUMO

Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells. Here, we document progressive apical enrichment of non-muscle myosin-II in mitotic, but not non-mitotic, neuroepithelial cells with smaller apical areas. Live-imaging of the chick posterior neuropore confirms apical constriction synchronised with mitosis, reaching maximal constriction by anaphase, before division and re-dilation. Mitotic apical constriction amplitude is significantly greater than interphase constrictions. To investigate conservation in humans, we characterised early stages of iPSC differentiation through dual SMAD-inhibition to robustly produce pseudostratified neuroepithelia with apically enriched actomyosin. These cultured neuroepithelial cells achieve an equivalent apical area to those in mouse embryos. iPSC-derived neuroepithelial cells have large apical areas in G2 which constrict in M phase and retain this constriction in G1/S. Given that this differentiation method produces anterior neural identities, we studied the anterior neuroepithelium of the elevating mouse mid-brain neural tube. Instead of constricting, mid-brain mitotic neuroepithelial cells have larger apical areas than interphase cells. Tissue geometry differs between the apically convex early midbrain and flat posterior neuropore. Culturing human neuroepithelia on equivalently convex surfaces prevents mitotic apical constriction. Thus, neuroepithelial cells undergo high-amplitude apical constriction synchronised with cell cycle progression but the timing of their constriction if influenced by tissue geometry.


Assuntos
Mitose , Sistema Nervoso , Humanos , Animais , Camundongos , Constrição , Ciclo Celular , Diferenciação Celular/fisiologia
2.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34409445

RESUMO

The successful investigation of photosensitive and dynamic biological events, such as those in a proliferating tissue or a dividing cell, requires non-intervening high-speed imaging techniques. Electrically tunable lenses (ETLs) are liquid lenses possessing shape-changing capabilities that enable rapid axial shifts of the focal plane, in turn achieving acquisition speeds within the millisecond regime. These human-eye-inspired liquid lenses can enable fast focusing and have been applied in a variety of cell biology studies. Here, we review the history, opportunities and challenges underpinning the use of cost-effective high-speed ETLs. Although other, more expensive solutions for three-dimensional imaging in the millisecond regime are available, ETLs continue to be a powerful, yet inexpensive, contender for live-cell microscopy.


Assuntos
Cristalino , Lentes , Eletricidade , Humanos , Imageamento Tridimensional , Microscopia
3.
Trends Cell Biol ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38030542

RESUMO

The growth of artificial intelligence (AI) has led to an increase in the adoption of computer vision and deep learning (DL) techniques for the evaluation of microscopy images and movies. This adoption has not only addressed hurdles in quantitative analysis of dynamic cell biological processes but has also started to support advances in drug development, precision medicine, and genome-phenome mapping. We survey existing AI-based techniques and tools, as well as open-source datasets, with a specific focus on the computational tasks of segmentation, classification, and tracking of cellular and subcellular structures and dynamics. We summarise long-standing challenges in microscopy video analysis from a computational perspective and review emerging research frontiers and innovative applications for DL-guided automation in cell dynamics research.

4.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880744

RESUMO

Time-lapse microscopy movies have transformed the study of subcellular dynamics. However, manual analysis of movies can introduce bias and variability, obscuring important insights. While automation can overcome such limitations, spatial and temporal discontinuities in time-lapse movies render methods such as 3D object segmentation and tracking difficult. Here, we present SpinX, a framework for reconstructing gaps between successive image frames by combining deep learning and mathematical object modeling. By incorporating expert feedback through selective annotations, SpinX identifies subcellular structures, despite confounding neighbor-cell information, non-uniform illumination, and variable fluorophore marker intensities. The automation and continuity introduced here allows the precise 3D tracking and analysis of spindle movements with respect to the cell cortex for the first time. We demonstrate the utility of SpinX using distinct spindle markers, cell lines, microscopes, and drug treatments. In summary, SpinX provides an exciting opportunity to study spindle dynamics in a sophisticated way, creating a framework for step changes in studies using time-lapse microscopy.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional , Fuso Acromático , Linhagem Celular , Citoplasma , Corantes Fluorescentes , Modelos Teóricos
5.
J Mater Chem B ; 11(4): 787-801, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36472454

RESUMO

Magnetic nanoparticles (NPs) are powerful agents to induce hyperthermia in tumours upon the application of an alternating magnetic field or an infrared laser. Dopants have been investigated to alter different properties of materials. Herein, the effect of zinc doping into iron oxide NPs on their magnetic properties and structural characteristics has been investigated in-depth. A high temperature reaction with autogenous pressure was used to prepare iron oxide and zinc ferrite NPs of same size and morphology for direct comparison. Pressure was key in obtaining high quality nanocrystals with reduced lattice strain (27% less) and enhanced magnetic properties. Zn0.4Fe2.6O4 NPs with small size of 10.2 ± 2.5 nm and very high saturation magnetisation of 142 ± 9 emu gFe+Zn-1 were obtained. Aqueous dispersion of the NPs showed long term magnetic (up to 24 months) and colloidal stability (at least 6 d) at physiologically mimicking conditions. The samples had been kept in the fridge and had been stable for four years. The biocompatibility of Zn0.4Fe2.6O4 NPs was next evaluated by metabolic activity, membrane integrity and clonogenic assays, which show an equivalence to that of iron oxide NPs. Zinc doping decreased the bandgap of the material by 22% making it a more efficient photothermal agent than iron oxide-based ones. Semiconductor photo-hyperthermia was shown to outperform magneto-hyperthermia in cancer cells, reaching the same temperature 17 times faster whilst using 20 times less material (20 mgFe+Zn ml-1vs. 1 mgFe+Zn ml-1). Magnetothermal conversion was minimally hindered in the cellular confinement whilst photothermal efficiency remained unchanged. Photothermia treatment alone achieved 100% cell death after 10 min of treatment compared to only 30% cell death achieved with magnetothermia at clinically relevant settings for each at their best performing concentration. Altogether, these results suggest that the biocompatible and superparamagnetic zinc ferrite NPs could be a next biomaterial of choice for photo-hyperthermia, which could outperform current iron oxide NPs for magnetic hyperthermia.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA